重新分配时,按升序对 pandas 系列中的值进行排序不起作用

问题描述:

我正在尝试按升序对Pandas系列进行排序.

I am trying to sort a Pandas Series in ascending order.

Top15['HighRenew'].sort_values(ascending=True)

给我:

Country
China                       1
Russian Federation          1
Canada                      1
Germany                     1
Italy                       1
Spain                       1
Brazil                      1
South Korea           2.27935
Iran                  5.70772
Japan                 10.2328
United Kingdom        10.6005
United States          11.571
Australia             11.8108
India                 14.9691
France                17.0203
Name: HighRenew, dtype: object

值按升序.

但是,当我随后在数据框的上下文中修改系列时:

However, when I then modify the series in the context of the dataframe:

Top15['HighRenew'] = Top15['HighRenew'].sort_values(ascending=True)
Top15['HighRenew']

给我:

Country
China                       1
United States          11.571
Japan                 10.2328
United Kingdom        10.6005
Russian Federation          1
Canada                      1
Germany                     1
India                 14.9691
France                17.0203
South Korea           2.27935
Italy                       1
Spain                       1
Iran                  5.70772
Australia             11.8108
Brazil                      1
Name: HighRenew, dtype: object

为什么这给了我与上面不同的输出?

Why this is giving me a different output to that above?

请问您有什么建议吗?

Top15['HighRenew'] = Top15['HighRenew'].sort_values(ascending=True).to_numpy() 

Top15['HighRenew'] = Top15['HighRenew'].sort_values(ascending=True).reset_index(drop=True)

当您对sort_values进行排序时,索引不会更改,因此它会根据索引进行对齐!

When you sort_values , the indexes don't change so it is aligning per the index!

感谢anky为我提供了这个出色的解决方案!

Thank you to anky for providing me with this fantastic solution!