F. Maximum White Subtree
You are given a tree consisting of v is black).
You have to solve the following problem for each vertex cntw−cntb.
Input
The first line of the input contains one integer 2≤n≤2⋅105) — the number of vertices in the tree.
The second line of the input contains i-th vertex.
Each of the next (1≤ui,vi≤n,ui≠vi).
It is guaranteed that the given edges form a tree.
Output
Print i.
Examples
input
Copy
9 0 1 1 1 0 0 0 0 1 1 2 1 3 3 4 3 5 2 6 4 7 6 8 5 9
output
Copy
2 2 2 2 2 1 1 0 2
input
Copy
4 0 0 1 0 1 2 1 3 1 4
output
Copy
0 -1 1 -1
Note
The first example is shown below:
The black vertices have bold borders.
In the second example, the best subtree for vertices 3.
两次dfs
#include <iostream> #include <vector> #include <algorithm> #include <string> #include <set> #include <queue> #include <map> #include <sstream> #include <cstdio> #include <cstring> #include <numeric> #include <cmath> #include <iomanip> #include <deque> #include <bitset> //#include <unordered_set> //#include <unordered_map> #define ll long long #define pii pair<int, int> #define rep(i,a,b) for(int i=a;i<=b;i++) #define dec(i,a,b) for(int i=a;i>=b;i--) #define forn(i, n) for(int i = 0; i < int(n); i++) using namespace std; int dir[4][2] = { { 1,0 },{ 0,1 } ,{ 0,-1 },{ -1,0 } }; const long long INF = 0x7f7f7f7f7f7f7f7f; const int inf = 0x3f3f3f3f; const double pi = 3.14159265358979323846; const double eps = 1e-6; const int mod = 1e9 + 7; const int N = 2e5 + 5; //if(x<0 || x>=r || y<0 || y>=c) inline ll read() { ll x = 0; bool f = true; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); } while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar(); return f ? x : -x; } ll gcd(ll m, ll n) { return n == 0 ? m : gcd(n, m % n); } ll lcm(ll m, ll n) { return m * n / gcd(m, n); } bool prime(int x) { if (x < 2) return false; for (int i = 2; i * i <= x; ++i) { if (x % i == 0) return false; } return true; } ll qpow(ll m, ll k, ll mod) { ll res = 1, t = m; while (k) { if (k & 1) res = res * t % mod; t = t * t % mod; k >>= 1; } return res; } vector<int> a(N),dp(N),ans(N),node[N]; void dfs1(int u, int fa) { dp[u] = a[u]; for (auto v : node[u]) { if (v == fa) continue; dfs1(v, u); dp[u] += max(dp[v], 0); } } void dfs2(int u, int fa, int sum) { ans[u] = dp[u] + sum; for (auto v : node[u]) { if (v == fa) continue; dfs2(v, u, max(0, ans[u] - max(0, dp[v]))); } } int main() { int n; cin >> n; rep(i, 1, n) { cin >> a[i]; if (a[i] == 0) a[i] = -1; } rep(i, 1, n-1) { int u, v; cin >> u >> v; node[u].push_back(v); node[v].push_back(u); } dfs1(1, -1); dfs2(1, -1, 0); rep(i, 1, n) cout << ans[i] << " "; return 0; }