Spark Scala-从dataframe列解析json并返回带有列的RDD
问题描述:
我有一个sparkScala RDD
,看起来像这样:
I have a sparkScala RDD
that looks like this :
df.printSchema()
|-- stock._id: string (nullable = true)
|-- stock.value: string (nullable = true)
RDD
的第二列是嵌套的JSON
:
[ { ""warehouse"" : ""Type1"" , ""amount"" : ""0.0"" }, { ""warehouse"" : ""Type1"" , ""amount"" : ""25.0"" }]
我需要生成一个RDD
,其中将包含现有的两列,也包含来自JSON
的列,例如:
I need to generate an RDD
that will contain the existing two columns but also the columns from the JSON
like:
_id, value , warehouse , amount
我尝试使用自定义函数来实现它,但是我正在努力将此函数应用于我的RDD
并获得所需的结果
I've tried to do it using custom functions, but I'm struggling to apply this function to my RDD
and getting the needed result
import org.json4s.jackson.JsonMethods._
import org.json4s._
def extractWarehouses (value: String) {
val json = parse(value)
for {
JObject(warehouses) <- json
JField("warehouse", JString(warehouse)) <- warehouses
JField("amount", JDouble(amount)) <- warehouses
} yield (warehouse, amount)
}
答
正如您所说的,value
是一个json数组,其中保存json对象的列表,您需要对其进行分解并获取单独的属性,如下所示:
As you said value
is a json array which is holding list of json objects, you need to explode it and get individual properties as columns something like below:
import org.apache.spark.sql.functions
val flattenedDF = df.select(functions.column("_id"), functions.explode(df("value")).as("value"))
val result = flattenedDF.select("_id", "value.warehouse", "value.amount")
result.printSchema()