如何根据给定的标准将一个csv文件拆分为多个csv?
我需要根据给定的时间分割几个csv文件.在这些文件中,时间值以秒为单位,并在时间"列中给出.
I need to split few csv files based on a given time. In these files the time values are in seconds and given in 'Time' column.
例如,如果我想在0.1秒内拆分aaa.csv
文件,则需要将时间为0.0到0.1(附件文件中没有1到8)的第一行记录写入aaa1.csv
,然后到aaa2.csv
的时间大于0.1到0.2(附件文件中的第9到21号)的行,依此类推...(基本上是给定时间的倍数).
For example, if I want to split aaa.csv
file in 0.1 seconds, then the first set of rows with time 0.0 to 0.1 (No 1 to 8 in attached file) needs to get written into aaa1.csv
, then the rows with time greater than 0.1 to 0.2 (No. 9 to 21 in attached file) to aaa2.csv
so on...(basically multiples of the given time).
输出文件的名称必须与输入文件的名称相同,并在末尾加上数字.并且需要将输出文件写入不同的位置/文件夹. 时间值必须是一个变量.因此,一次我可以在0.1秒内拆分文件,另一次我可以在0.7秒内拆分文件,依此类推.
Output files needs to get the same name as input file along with a number at the end. And output files need to get written into a different location/folder. Time value need to be a variable. So at a time I can split in 0.1 sec and at another time I can split the file in 0.7sec so on.
请问我该如何编写python脚本?该文件如下所示(可以从 https://fil.email/vnsZsp7b 下载的整个119K文件) :
How can I write a python script for this please? The file looks like the following (entire 119K file can be downloaded from https://fil.email/vnsZsp7b):
No.,Time,Length
1,0,146
2,0.006752,116
3,0.019767,156
4,0.039635,144
5,0.06009,147
6,0.069165,138
7,0.0797,133
8,0.099397,135
9,0.120142,135
10,0.139721,148
11,0.1401,126
12,0.1401,120
13,0.140101,123
14,0.140101,120
15,0.141294,118
16,0.141295,118
17,0.141295,114
18,0.144909,118
19,0.160639,119
20,0.161214,152
21,0.185625,143
... etc
在@Serafeim回答之后,我尝试了此操作:
import pandas as pd
import numpy as np
import glob
import os
path = '/root/Desktop/TT1/'
mystep = 0.4
for filename in glob(os.path.join(path, '*.csv')):
df = pd.read_csv(filename)
def data_splitter(df):
max_time = df['Time'].max() # get max value of Time for the current csv file (df)
myrange= np.arange(0, max_time, mystep) # build the threshold range
for k in range(len(myrange)):
# build the upper values
temp = df[(df['Time'] >= myrange[k]) & (df['Time'] < myrange[k] + mystep)]
#temp.to_csv("/root/Desktop/T1/xx_{}.csv".format(k))
temp.to_csv("/root/Desktop/T1/{}_{}.csv".format(filename, k))
data_splitter(df)
您只需使用pandas
在数据框上应用逻辑运算即可.✔️
You just need to apply a logical operation on the dataframe using pandas
. ✔️
在此答案的结尾,我有一个脚本想法"可以自动执行此操作,但首先让我们一步一步地进行操作:
At the end of this answer I have a "script idea" to do this automatically but first let's go Step by step:
# Load the files using pandas
import pandas as pd
df = pd.read_csv("/Users/serafeim/Downloads/Testfile.csv")
# Get the desired elements based on 'Time' column
mask = df['Time'] < 0.1
# Write the new file
df_1 = df[mask] # or directly use: df_1 = df[df['Time'] < 0.1]
# save it
df_1.to_csv("Testfile1.csv")
print(df_1)
No. Time Length
0 1 0.000000 146
1 2 0.006752 116
2 3 0.019767 156
3 4 0.039635 144
4 5 0.060090 147
5 6 0.069165 138
6 7 0.079700 133
7 8 0.099397 135
#For 0.1 to 0.2 applying 2 logical conditions
df_2 = df[(df['Time'] > 0.1) & (df['Time'] < 0.2)]
脚本构想:
import pandas as pd
import numpy as np
mystep = 0.2 # the step e.g. 0.2, 0.4, 0.6
#define the function
def data_splitter(df):
max_time = df['Time'].max() # get max value of Time for the current csv file (df)
myrange= np.arange(0, max_time, mystep) # build the threshold range
for k in range(len(myrange)):
# build the upper values
temp = df[(df['Time'] >= myrange[k]) & (df['Time'] < myrange[k] + mystep)]
temp.to_csv("/Users/serafeim/Downloads/aaa_{}.csv".format(k))
现在,调用函数:
df = pd.read_csv("/Users/serafeim/Downloads/Testfile.csv")
data_splitter(df) # pass the df to the function and call the function
最后,您可以创建一个循环,并在data_splitter()
函数中逐个传递每个df
.
Finally, you can create a loop and pass each df
one by one in the data_splitter()
function.
要弄清楚该函数的功能,如下所示:
To make more clear what the function does look this:
for k in range(len(myrange)):
print myrange[k], myrange[k]+step
此打印:
0.0 0.2
0.2 0.4
0.4 0.6000000000000001
0.6000000000000001 0.8
0.8 1.0
因此它创建了较低的&根据当前.csv文件的Time
列的最大值自动设置上限阈值.
So it creates the lower & upper thresholds automatically based on the max value of Time
column of the current .csv file.
import glob, os
path = '/Volumes/'
mystep = 0.2
for filename in glob.glob(os.path.join(path, '*.csv')):
df = pd.read_csv(filename)
data_splitter(df)
一起放所有东西:
import pandas as pd
import numpy as np
import glob
import os
path = '/root/Desktop/TT1/'
mystep = 0.4
#define the function
def data_splitter(df, name):
max_time = df['Time'].max() # get max value of Time for the current csv file (df)
myrange= np.arange(0, max_time, mystep) # build the threshold range
for k in range(len(myrange)):
# build the upper values
temp = df[(df['Time'] >= myrange[k]) & (df['Time'] < myrange[k] + mystep)]
temp.to_csv("/root/Desktop/T1/{}_{}.csv".format(name, k))
for filename in glob.glob(os.path.join(path, '*.csv')):
df = pd.read_csv(filename)
name = os.path.split(filename)[1] # get the name of the file
data_splitter(df, name) # call the splitting function