洛谷.3803.[模板]多项式乘法(NTT)
为什么和那些差那么多啊。。
在这里记一下原根
Definition
阶
若(a,p)互质,且(p>1),我们称使(a^nequiv 1 (mod p))成立的最小正整数(n)为(a)模(p)的阶,记作(delta_p(a))。
例:(delta_7(2)=3)。
原根
设(p)是正整数,(a)是整数,若(delta_p(a)=varphi(m)),则称(a)为模(p)的一个原根。
从另一方面来说,若(g^i mod p
eq g^j mod p (p为质数,i
eq j且i,jinleft[1,p-1
ight])),则(g)为(p)的原根。
性质
1. 若(p)有原根,那么(p)有(varphi(varphi(p)))个原根。
2. 有原根的数只有:(2,4,p^n,2 imes p^n) ((p)为奇素数,(n)为正整数)。
3. 一个数的最小原根的大小是(O(n^{0.25}))的。
4. 若(g)为(p)的原根,则(g^a)为(p)的原根的充要条件为 (a)与(varphi(p))互质。
(参考抄自这儿)
求法
求(p)的原根:对(varphi(p)=p-1)分解质因子,即令(p-1=prod_{i=1}^kp_i^{a_i} (p_i为质数))
若(g^{frac{p-1}{p_i}}
eq 1 (mod p))恒成立,则(g)为(p)的一个原根。
#include <cstdio>
#include <cctype>
#include <algorithm>
#define P (998244353)
#define G (3)
#define inv_G (332748118)
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=(1<<21)+5;//2 097 152 //2e6+5;
int n,m,rev[N];
LL A[N],B[N],inv_lim;//全换成int好像大概略快吧
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
register char c=gc();
for(;!isdigit(c);c=gc());
return c-'0';//233
}
inline LL FP(LL x,LL k)
{
LL t=1;
for(; k; k>>=1,x=x*x%P)
if(k&1) t=t*x%P;
return t;
}
void NTT(LL *a,int lim,int type)
{
for(int i=0; i<lim; ++i)
if(i<rev[i]) std::swap(a[i],a[rev[i]]);
for(int i=2; i<=lim; i<<=1)
{
int mid=i>>1;
LL Wn=FP(~type?G:inv_G,(P-1)/i),t,w;
for(int j=0; j<lim; j+=i)
{
LL w=1;
for(int k=0; k<mid; ++k, w=w*Wn%P)
a[j+k+mid]=(a[j+k]-(t=w*a[j+k+mid]%P)+P)%P,
a[j+k]=(a[j+k]+t)%P;
}
}
if(type==-1) for(int i=0; i<lim; ++i) a[i]=a[i]*inv_lim%P;
}
int main()
{
scanf("%d%d",&n,&m);//sb了拿那个read读n,m。。
for(int i=0; i<=n; ++i) A[i]=read();//(read()%P+P)%P
for(int i=0; i<=m; ++i) B[i]=read();
int lim=1,len=0;
while(lim<=n+m) lim<<=1,++len;
inv_lim=FP(lim,P-2);
for(int i=1; i<lim; ++i)
rev[i] = (rev[i>>1]>>1) | ((i&1)<<len-1);
NTT(A,lim,1), NTT(B,lim,1);
for(int i=0; i<lim; ++i) A[i]=A[i]*B[i]%P;
NTT(A,lim,-1);
for(int i=0; i<=n+m; ++i) printf("%lld ",A[i]);
return 0;
}