如何在Open CV LibSVM中扩展数据
我正在开发英文手写OCR。我使用基于区域的方法进行特征提取。在这里,我使用64 X 64图像。
所以我有一个样本图像的64个功能。我的SVM将是多级SVM,因为我有52个大写字母和简单字母。
这是特征向量的格式。
A类图像1 0:0.222000 1:0.0250222 ..... 63:0.000052
A类图像2(一些浮动值)....
A类图像400 (一些漂浮值)
同样我有52个类的400张图像。我读过缩放数据可以提高预测的准确性。
但是我还有一些事情需要说清楚。
01.如何缩放这些特征值?
02.是否有任何函数可以获得Open CV LibSVM中每个测试特征向量的匹配概率?
(我搜索Open CV 2.4.5文档,但我找不到这个)
有人可以解释这些吗?如果可能的话,还有一些代码行。
谢谢
i am developing English Handwriting OCR. I use Zone based approach for feature extraction. Here I use 64 X 64 images.
So i have 64 features for one sample image. My SVM will be Multi-class SVM because i have 52 classes for both capital and simple letters.
Here is the format of feature vector.
Class A image1 0 : 0.222000 1 : 0.0250222 ..... 63 : 0.000052
Class A image2 (some float values) ....
Class A image400 (some float values)
likewise i have 400 images for both 52 classes. I have read as scaling data increase the accuracy of the prediction.
But i have few things to be make clear.
01. How can i scale these feature values ?
02. Is there any function to get the matching probability of each test feature vector in Open CV LibSVM?
(i search the Open CV 2.4.5 documentation, but i couldn't find this)
can anyone explain these? , and also with some few code lines if possible.
Thank you
大家好,
i我将继续这样做。有没有人有任何想法或建议,请在这里评论。谢谢
hi all,
i found scaling data means , keep all training and testing data within a range such as 0 - 1 or -1 - +1. i will proceed with that. does anyone has any idea or suggestion, please comment it here. thank you