lightgbm json模型结果能否迭代解析转成sql,求教!
问题描述:
基本测试程序如下
import lightgbm as lgb
from sklearn.metrics import mean_squared_error
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
from sklearn import tree
from sklearn import metrics
# 加载数据
iris = load_iris()
# 加载数据
iris = load_iris()
feature_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
data = pd.DataFrame(iris.data, columns=feature_names)
data['target'] = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(
data[feature_names], data['target'], test_size=0.2, random_state=42)
print("Train data length:", len(X_train))
print("Test data length:", len(X_test))
# 转换为Dataset数据格式
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
# 参数
params = {
'task': 'train',
'boosting_type': 'gbdt', # 设置提升类型
'objective': 'regression', # 目标函数
'metric': {'l2', 'auc'}, # 评估函数
'num_leaves': 31, # 叶子节点数
'learning_rate': 0.05, # 学习速率
'feature_fraction': 0.9, # 建树的特征选择比例
'bagging_fraction': 0.8, # 建树的样本采样比例
'bagging_freq': 5, # k 意味着每 k 次迭代执行bagging
'verbose': 1 # <0 显示致命的, =0 显示错误 (警告), >0 显示信息
}
# 模型训练
gbm = lgb.train(params, lgb_train, num_boost_round=2, valid_sets=lgb_eval)
lgbm_json = gbm.dump_model()
lgbm_json
模型lgbm_jsom如下,想请教如何把下面模型结果通过json迭代解析成sql
{'name': 'tree',
'version': 'v3',
'num_class': 1,
'num_tree_per_iteration': 1,
'label_index': 0,
'max_feature_idx': 3,
'objective': 'regression',
'average_output': False,
'feature_names': ['sepal_length',
'sepal_width',
'petal_length',
'petal_width'],
'monotone_constraints': [],
'feature_infos': {'sepal_length': {'min_value': 4.3,
'max_value': 7.7,
'values': []},
'sepal_width': {'min_value': 2, 'max_value': 4.4, 'values': []},
'petal_length': {'min_value': 1, 'max_value': 6.7, 'values': []},
'petal_width': {'min_value': 0.1, 'max_value': 2.5, 'values': []}},
'tree_info': [{'tree_index': 0,
'num_leaves': 3,
'num_cat': 0,
'shrinkage': 1,
'tree_structure': {'split_index': 0,
'split_feature': 2,
'split_gain': 49.12009811401367,
'threshold': 3.1500000000000004,
'decision_type': '<=',
'default_left': True,
'missing_type': 'None',
'internal_value': 0.991667,
'internal_weight': 0,
'internal_count': 99,
'left_child': {'leaf_index': 0,
'leaf_value': 0.9434722218364995,
'leaf_weight': 36,
'leaf_count': 36},
'right_child': {'split_index': 1,
'split_feature': 2,
'split_gain': 12.203200340270996,
'threshold': 4.750000000000001,
'decision_type': '<=',
'default_left': True,
'missing_type': 'None',
'internal_value': 1.01669,
'internal_weight': 63,
'internal_count': 63,
'left_child': {'leaf_index': 1,
'leaf_value': 0.9920833333550643,
'leaf_weight': 28,
'leaf_count': 28},
'right_child': {'leaf_index': 2,
'leaf_value': 1.03636904726958,
'leaf_weight': 35,
'leaf_count': 35}}}}],
'feature_importances': {'petal_length': 2},
'pandas_categorical': []}
答
卡么可能