支持向量机(SVM),SMO算法原理及源代码辨析

支持向量机(SVM),SMO算法原理及源代码剖析

参考了网上一些其他人写的博客,都有或多或少的缺陷,比如****上将SVM浏览量最多的那个,他讲到SMO算法中,alpha和b的更新值他直接给出了结果,没有推导。

我总结了网上别人的东西,将SVM,SMO中所有的数学推理从头到尾整理了出来。

最后代码中没有kernal的转换,只是内积,主要是想给大家把SVM的原理讲明白。最后的Python源代码(来自Machine Learning in Action)只是一个简单的smo算法,帮助大家理解SVM,详细的源代码请大家去下libSVM。

文章在word里写好了,公式没法贴到论坛里,所以就直接截图了

支持向量机(SVM),SMO算法原理及源代码辨析

支持向量机(SVM),SMO算法原理及源代码辨析

支持向量机(SVM),SMO算法原理及源代码辨析

支持向量机(SVM),SMO算法原理及源代码辨析

支持向量机(SVM),SMO算法原理及源代码辨析

支持向量机(SVM),SMO算法原理及源代码辨析

支持向量机(SVM),SMO算法原理及源代码辨析

支持向量机(SVM),SMO算法原理及源代码辨析

支持向量机(SVM),SMO算法原理及源代码辨析

支持向量机(SVM),SMO算法原理及源代码辨析

支持向量机(SVM),SMO算法原理及源代码辨析

下面是Python写到简单smo算法

def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
    b = 0; m,n = shape(dataMatrix)
    alphas = mat(zeros((m,1)))#alphas和b的初值都为0
    iter = 0
    while (iter < maxIter):
        alphaPairsChanged = 0
        for i in range(m):
            fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):#不满足KKT条件就更新
                j = selectJrand(i,m)
                fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
                if (labelMat[i] != labelMat[j]):
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L==H: print "L==H"; continue
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >= 0: print "eta>=0"; continue
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
                                                                        #the update is in the oppostie direction
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                if (0 < alphas[i]) and (C > alphas[i]): b = b1
                elif (0 < alphas[j]) and (C > alphas[j]): b = b2
                else: b = (b1 + b2)/2.0
                alphaPairsChanged += 1
                print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
        if (alphaPairsChanged == 0): iter += 1
        else: iter = 0
        print "iteration number: %d" % iter
    return b,alphas