ACM:DAG上的动态规划-硬币有关问题
ACM:DAG上的动态规划------硬币问题
题目:有n种硬币,面值分别为V1,V2,...Vn,每种都有无限多。给定非负整数S,可以选用多少个硬币,使得面值之和恰好为S?输出硬币数目的最小值和最大值!
分析:我们把每种面值看作一个点!表示“还需要凑足的面值”,初始状态为S,目标状态为0。那么若当前状态在i,每使用一个硬币j,状态便转移到i-Vj。
代码:
记忆化搜索:
#include <iostream> #include <string> using namespace std; int n, S, V[MAXN], d[MAXN], vis[MAXN]; const int MAXN = 10000; const int INF = 100000000; int dpmax(int S) { if(vis[S]) return d[S]; vis[S] = 1; int &ans = d[S]; ans = -1 << 30; for(int i = 1; i <= n; ++i) { if(S >= V[i]) ans = max(ans, dpmax(S - V[i]) + 1); } return ans; } int dpmin(int S) { if(vis[S]) return d[S]; vis[S] = 1; int &ans = d[S]; ans = -1 >> 30; for(int i = 1; i <= n; ++i) { if(S >= V[i]) ans = min(ans, dpmin(S - V[i]) + 1); } return ans; } int main() { memset(vis, 0, sizeof(vis)); cin >> n >> S; for(int i = 1; i <= n; ++i) { cin >> V[i]; } cout << dpmax(S) << endl; cout << dpmin(S) << endl; return 0; }
递推:
打印字典序最小的路径:
<pre class="cpp" name="code">#include <iostream> #include <string> using namespace std; const int MAXN = 10000; const int INF = 1000000000; int n, S, V[MAXN], minn[MAXN], maxn[MAXN]; //minn[i]表示还需凑足价值为i的话,所需的最少的硬币数目!maxn[i]表示还需凑足价值为i的话,所需的最多的硬币数目! void print_ans(int* d, int S) { for(int i = 1; i <= n; ++i) { if(S >= V[i] && d[S] == d[S - V[i]] + 1){ //从小到大寻找满足条件的那个点! cout << i << " "; print_ans(d, S-V[i]); break; //这个不能忘记! } } } int main() { cin >> n >> S; for(int i = 1; i <= n; ++i) { cin >> V[i]; } memset(minn, INF, sizeof(minn)); memset(maxn, -INF, sizeof(maxn)); for(int i = 1; i <= S; ++i) { //递推!求出所有minn[1...S]与maxn[1...S]! for(int j = 1; j <= n; ++j) { if(i >= V[j]) { minn[i] = min(minn[i], minn[i - V[j]] + 1); maxn[i] = max(maxn[i], maxn[i - V[j]] + 1); } } } cout << minn[S] << endl; cout << maxn[S] << endl; print_ans(minn, S); cout << endl; print_ans(maxn, S); cout << endl; return 0; }
另外一种打印路径的方法:
#include <iostream> #include <string> using namespace std; const int MAXN = 10000; const int INF = 1000000000; int n, S, V[MAXN], minn[MAXN], maxn[MAXN]; //minn[i]表示还需凑足价值为i的话,所需的最少的硬币数目!maxn[i]表示还需凑足价值为i的话,所需的最多的硬币数目! int min_coin[MAXN], max_coin[MAXN]; //min_coin[S]记录的是满足minn[S] = minn[S-V[i]]+1的最小的i。 void print_ans(int* d, int S) { while(S) { cout << d[S] << " "; S -= V[d[S]]; } } int main() { cin >> n >> S; for(int i = 1; i <= n; ++i) { cin >> V[i]; } memset(minn, INF, sizeof(minn)); memset(maxn, -INF, sizeof(maxn)); for(int i = 1; i <= S; ++i) { //递推!求出所有minn[1...S]与maxn[1...S]! for(int j = 1; j <= n; ++j) { if(i >= V[j]) { if(minn[i] > minn[i - V[j]] + 1) { minn[i] = minn[i - V[j]] + 1; min_coin[i] = j; } if(maxn[i] < maxn[i - V[j]] + 1) { maxn[i] = maxn[i - V[j]] + 1; max_coin[i] = j; } } } } cout << minn[S] << endl; cout << maxn[S] << endl; print_ans(min_coin, S); cout << endl; print_ans(max_coin, S); cout << endl; return 0; }