识别data.frame中仅在R中具有NA值的行
我有一个data.frame
,其中有15,000个对34个序数和NA
变量的观察.我正在为市场细分研究执行聚类,并且只需要删除NAs
的行.取出userID之后,我收到一条错误消息,提示在集群之前仅使用NAs
省略2099行.
I have a data.frame
with 15,000 observations of 34 ordinal and NA
variables. I am performing clustering for a market segmentation study and need the rows with only NAs
removed. After taking out the userID I got an error message saying to omit 2099 rows with only NAs
before clustering.
我找到了一个链接,用于删除具有所有NA
值的行,但是我需要确定2099行中的哪些具有所有NA值.此处的讨论链接删除具有所有NA
值的行:使用以下命令删除行data.frame中的NAs
I found a link for removing rows with all NA
values, but I need to identify which of the 2099 rows have all NA values. Here the link for the discussion removing rows with all NA
values: Remove Rows with NAs in data.frame
以下是来自六个变量的前五个观察值的样本:
Here's a sample of the first five observations from six variables:
> head(Store2df, n=5)
RowNo Age Gender HouseholdIncome MaritalStatus PresenceofChildren
1 1 <NA> Male <NA> <NA> <NA>
2 2 45-54 Female <NA> <NA> <NA>
3 3 <NA> <NA> <NA> <NA> <NA>
4 4 <NA> <NA> <NA> <NA> <NA>
5 5 45-54 Female 75k-100k Married Yes
#Making a vector
> Vector1 <- Store2df$RowNo
#Taking out RowNo column
> Store2df$RowNo <- NULL
编辑:我将结果放在一个对象中,但是发现代码增加了一个额外的列.在RStudio的环境中单击,将创建一个名为row.names的额外列,并用原始行名标记每一行.删除了两千行,新列用旧行号标记了新行.但是,当查看新对象的头部时,我没有看到行标签.为什么row.names标签在环境中显示,而在查看标题时却不显示?
I put the results in a object, but found that the code made an extra column. Clicking in RStudio's environment, an extra column called row.names was created labeling each row with the original row name. A couple thousand rows were deleted and the new column labeled the new rows with the old row number. However when looking at the head of the new object, I did not see the row label. Why does the row.names label show in the environment, but not when I view the head?
#Remove all rows with only NA values
> Store2df <- Store2[!!rowSums(!is.na(Store2)),]
#View head of store2df
> head(Store2df)
Age Gender HouseholdIncome MaritalStatus PresenceofChildren
1 <NA> Male <NA> <NA> <NA>
2 45-54 Female <NA> <NA> <NA>
5 45-54 Female 75k-100k Married Yes
6 25-34 Male 75k-100k Married No
7 35-44 Female 125k-150k Married Yes
8 55-64 Male 75k-100k Married No
我在行号/用户ID列中输入以跟踪用户数.为了执行删除所有NA
的操作,我取出了第一列.现在,我需要跟踪我删除的用户.我有2000多个具有所有NA
值的行的列表,我不想手动在每个行中创建索引.
EDIT 2: I put in the row number/userID column to keep track of the number of users. To perform the operation for removing all NA
s, I took out the first column. Now I need to keep track of the users I removed. I have a list of over 2000 rows that had all NA
values, I don't want to create an index manually putting in each row.
问题:如何删除丢失数据所对应的电子邮件?
Question: How do I remove the emails that the missing data corresponded to?
> #First six rows of the column RowNo
> head(Store2df$RowNo)
[1] 1 2 3 4 5 6
我希望在Store2df data.frame
中删除2099行,其中包括RowNo
.这是脚本,用于识别Store2df data.frame
中没有RowNo
的所有行都是空的.
I want 2099 rows deleted in the Store2df data.frame
with the RowNo
included. Here's the script identifying which rows are all empty in the Store2df data.frame
without RowNo
.
> which(rowSums(is.na(Store2df))==ncol(Store2df))
显示前6行的行3和4被删除.
Showing the first 6 rows, row number 3 and 4 are deleted.
> head(Store2df$RowNo)
[1] 1 2 5 6 7 8
我要完成4个步骤:
1)取出Store2df data.frame
中的RowNo
列,并保存为单独的向量
1) Take out RowNo
column in Store2df data.frame
and save as separate vector
2)删除Store2df data.frame
2) Delete rows with all NA
values in Store2df data.frame
3)删除Store2new1 vector
中与Store2df data.frame
3) Delete same rows in Store2new1 vector
as Store2df data.frame
4)将vector
和data.frame
与匹配data.frame
which(rowSums(is.na(Store2))==ncol(Store2))
#3 4
#3 4
或
which(Reduce(`&`,as.data.frame(is.na(Store2))))
#[1] 3 4
或
which(!rowSums(!is.na(Store2)))
#3 4
#3 4
数据
Store2 <- structure(list(Age = c(NA, "45-54", NA, NA, "45-54"), Gender = c("Male",
"Female", NA, NA, "Female"), HouseholdIncome = c(NA, NA, NA,
NA, "75k-100k"), MaritalStatus = c(NA, NA, NA, NA, "Married"),
PresenceofChildren = c(NA, NA, NA, NA, "Yes"), HomeOwnerStatus = c(NA,
NA, NA, NA, "Own"), HomeMarketValue = c(NA, NA, NA, NA, "150k-200k"
)), .Names = c("Age", "Gender", "HouseholdIncome", "MaritalStatus",
"PresenceofChildren", "HomeOwnerStatus", "HomeMarketValue"), class = "data.frame", row.names = c("1",
"2", "3", "4", "5"))
更新
要删除所有NA
s
Store2[!!rowSums(!is.na(Store2)),]
# Age Gender HouseholdIncome MaritalStatus PresenceofChildren HomeOwnerStatus
#1 <NA> Male <NA> <NA> <NA> <NA>
#2 45-54 Female <NA> <NA> <NA> <NA>
#5 45-54 Female 75k-100k Married Yes Own
#HomeMarketValue
#1 <NA>
#2 <NA>
#5 150k-200k
-
is.na(Store2)
给出缺少或NA
的元素的逻辑索引
-
!
将取消逻辑索引,即TRUE
变为FALSE
,反之亦然
上面代码的 -
rowSums
给出了每一行中not NA
的元素之和-
is.na(Store2)
gives a logical index of elements that are missing orNA
-
!
will negate the logical index i.e.TRUE
becomesFALSE
and viceversa -
rowSums
of the above code gives the sum of elements that arenot NA
in each rowrowSums(!is.na(Store2)) # 1 2 3 4 5 # 1 2 0 0 7 # 3rd and 4th row have `0 non NA` values
-
!
否定以上给出的结果 -
!
Negate the above gives!rowSums(!is.na(Store2)) # 1 2 3 4 5 #FALSE FALSE TRUE TRUE FALSE
-
我们想删除那些
all NA's
或0 non NAs
的行.所以!
再次 -
We wanted to drop those rows that are
all NA's
or0 non NAs
. So!
again!!rowSums(!is.na(Store2)) #1 2 3 4 5 #TRUE TRUE FALSE FALSE TRUE
-
使用上述逻辑索引的子集
-
Subset using the above logical index
如果有两个
rowNo
,即在删除NA行之前分别存储的一个,而在删除NA后存储第二个.If you have two
rowNo
, i.e. the one you stored separately before deleting the NA rows and the second after you deleted the NAs.RowNo1 <- 1:6 RowNo2 <- c(1,2,5,6) RowNo1 %in% RowNo2 #[1] TRUE TRUE FALSE FALSE TRUE TRUE RowNo1[RowNo1 %in% RowNo2] #[1] 1 2 5 6
Update3
对于您的新请求,让我再试一次:
Update3
With your new requests, let me try it again:
Store2 <- structure(list(RowNo = 1:5, Age = c(NA, "45-54", NA, NA, "45-54" ), Gender = c("Male", "Female", NA, NA, "Female"), HouseholdIncome = c(NA, NA, NA, NA, "75k-100k"), MaritalStatus = c(NA, NA, NA, NA, "Married" ), PresenceofChildren = c(NA, NA, NA, NA, "Yes")), .Names = c("RowNo", "Age", "Gender", "HouseholdIncome", "MaritalStatus", "PresenceofChildren" ), class = "data.frame", row.names = c("1", "2", "3", "4", "5" ))
第一步
将
RowNo
另存为单独的向量(我不确定为什么需要这样做)First step
Saving
RowNo
as separate vector (I am not sure why you need this)Store2new1 <- Store2$RowNo
第二步
删除具有
Store2
data.frame中所有NA值的行并将其存储为Store2df
Second step
Delete rows with all NA values in
Store2
data.frame and store it asStore2df
Store2df <- Store2[!!rowSums(!is.na(Store2[,-1])),] #Here you already get the new dataset with `RowNo` column Store2df #RowNo Age Gender HouseholdIncome MaritalStatus PresenceofChildren #1 1 <NA> Male <NA> <NA> <NA> #2 2 45-54 Female <NA> <NA> <NA> #5 5 45-54 Female 75k-100k Married Yes
第三步
在Store2new1向量中删除与Store2df data.frame相同的行
Third step
Delete same rows in Store2new1 vector as Store2df data.frame
Store2new2 <- Store2new1[Store2new1 %in% Store2df$RowNo] Store2new1[Store2new1 %in% Store2df$RowNo] #[1] 1 2 5
第四步
除非您要删除更多行,否则我真的不认为需要第四步或第三步.
Fourth step
I don't really think the fourth step or third is required unless you want to delete more rows, which is not clear from the post.
-