Python TypeError:不支持的操作数类型/:'NoneType'和'float'
问题描述:
这是我们老师给我们的作业.我们应该使用辛普森规则对函数进行数值积分 f(x) = x*cos(third_root(x))
This is a assignment we got from our teacher. We are supposed to use Simpson's Rule to do a numerical integration of a functions f(x) = x*cos(third_root(x))
但是我们不允许使用cos
的内置函数或使用x**(1.0/3.0)
来求第三根.
But we are not allowed to use the built in function of cos
or use x**(1.0/3.0)
to find the third root.
我收到错误:
Traceback (most recent call last):
File "path", line 104, in <module>
print simpson(f, 1.0, 50.0, 10)
File "path", line 91, in simpson
I += 2 * f(x) + (4.0 * f(x + h))
File "path", line 101, in f
return x*final_cos(final_3root(x))
File "path", line 72, in final_cos
x = float_mod(x, 2 * pi)
File "path", line 42, in float_mod
k = int(x / a)
TypeError: unsupported operand type(s) for /: 'NoneType' and 'float'
Process finished with exit code 1
这是我的代码:
import math
def final_3root(a):
q, m = math.frexp(a)
if 0.5 > q or q > 1.0:
raise ValueError('Math domain error')
x = 0.8968521468804229452995486
factor_1 = 0.6299605249474365823836053
factor_2 = 0.7937005259840997373758528
q_croot = (q / (x * x) + 2.0 * x) / 3.0
q_croot = (q / (q_croot * q_croot) + 2.0 * q_croot) / 3.0
q_croot = (q / (q_croot * q_croot) + 2.0 * q_croot) / 3.0
q_croot = (q / (q_croot * q_croot) + 2.0 * q_croot) / 3.0
if m % 3.0 == 0.0:
m /= 3
answer = math.ldexp(q_croot, m)
elif m % 3 == 1:
m += 2
m /= 3
answer = factor_1 * math.ldexp(q_croot, m)
elif m % 3 == 2:
m += 1
m /= 3
answer = factor_2 * math.ldexp(q_croot, m)
fasit = a ** (1.0 / 3.0)
#----------------------------------------------
def float_mod(x, a):
k = int(x / a)
if (x * a) < 0:
k -= 1
return x - float(k) * a
def ratio_based_cosinus(x):
epsilon = 1.0e-16
previous_Value = 1
return_Value = 1
n = -1
while True:
n += 1
ratio = (-x * x) / (((2 * n) + 1) * ((2 * n) + 2))
previous_Value *= ratio
return_Value += previous_Value
if abs(previous_Value) < epsilon:
break
return return_Value
def final_cos(x):
if isinstance(x, int):
x += 0.0
pi = 3.1415926
x = float_mod(x, 2 * pi)
if x > pi:
return ratio_based_cosinus(-x)
else:
return ratio_based_cosinus(x)
#----------------------------------------------
def simpson(f, a, b, N):
if N & 1:
raise ValueError('Ugyldig tall')
I = 0
h = float((b - a) / N)
x = float(a)
for i in range(0, N / 2):
I += 2 * f(x) + (4.0 * f(x + h))
x += 2 * h
I += float(f(b) - f(a))
I *= h / 3
print "The sum is: ", I
def f(x):
return x*final_cos(final_3root(x))
print simpson(f, 1.0, 50.0, 10)
答
final_3root
缺少 return 语句.
final_3root
is missing a return statement.
仔细查看错误.x
是 None
.如果回溯它,您会看到使用了该函数的返回值,但它从不返回任何内容.
Look closely at the error. x
is None
. If you trace it back, you'll see that the return value of that function is used, but it never returns anything.