Java并发基础构建模块简介
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
package whut.producer;
import java.util.Random;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
//利用BlockingQueue实现消费者与生产者
class Producer implements Runnable
{
private final BlockingQueue
queue;
public Producer(BlockingQueue
q) {
queue
= q;
}
public void run()
{
try {
int i= 0 ;
while (i< 10 )
{
queue.put(i);
i++;
}
} catch (InterruptedException
ex) {
}
}
private Object
produce()
{
Random
rd= new Random();
int res=rd.nextInt( 10 );
return res;
}
}
class Consumer extends Thread
{
private final BlockingQueue
queue;
public Consumer(String
name,BlockingQueue q) {
super (name);
queue
= q;
}
public void run()
{
try {
while ( true )
{
consume(queue.take());
}
} catch (InterruptedException
ex) {
}
}
private void consume(Object
x) {
System.out.println(Thread.currentThread().getName()+ "
= " +x);
}
}
class BlockingQueueDemo
{
public static void main(String[]
args) {
BlockingQueue<Integer>
q = new ArrayBlockingQueue<Integer>( 10 );
Producer
p = new Producer(q);
Consumer
c1 = new Consumer( "Apple" ,q);
Consumer
c2 = new Consumer( "Hawk" ,q);
new Thread(p).start();
c1.start();
c2.start();
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
package whut.concurrentmodel;
import java.util.concurrent.CountDownLatch;
//利用闭锁来实现,闭锁可以用于线程之间的协作,
//即一个线程必须等待其余所有活动完后执行
public class CountDownLatchClient
{
public void timeTasks( int nThreads, final Runnable
task)
throws InterruptedException
{
//
工作线程等待其他活动执行完毕的{闭锁}
final CountDownLatch
startGate = new CountDownLatch( 1 );
//
主线程等待所有工作线程执行完毕的{闭锁}
final CountDownLatch
endGate = new CountDownLatch(nThreads);
for ( int i
= 0 ;
i < nThreads; i++) {
Thread
t = new Thread()
{
public void run()
{
try {
//
工作线程先等待其他活动执行完毕
startGate.await();
try {
task.run();
} finally {
System.out.println(Thread.currentThread().getName()
+ "
work finished..." );
//
工作线程执行完毕后,递减闭锁值
endGate.countDown();
}
} catch (InterruptedException
ie) {
}
}
};
t.start();
}
//
这里具体是任务,不过直接模拟了活动执行完毕了
startGate.countDown();
//
主线程先等待工作线程执行到0
endGate.await();
System.out.println( "All
workthread have finished..." );
}
//
主线程
public static void main(String[]
args) {
//
TODO Auto-generated method stub
Runnable
task = new Runnable()
{
public void run()
{
int i
= 0 ;
while (i
< 100 )
{
i++;
}
}
};
CountDownLatchClient
cdl = new CountDownLatchClient();
try {
cdl.timeTasks( 10 ,
task);
} catch (InterruptedException
e) {
}
System.out.println( "do
another thing ...." );
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
package whut.concurrentmodel;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
//栅栏实例
public class BarrierClient
{
public static void main(String[]
args) {
//
TODO Auto-generated method stub
BarrierClient
bc= new BarrierClient();
//获取可以同时并行处理的数目
int count=Runtime.getRuntime().availableProcessors();
CyclicBarrier
barrier= new CyclicBarrier(count);
for ( int i= 0 ;i<count;i++)
{
Worker
work=bc. new Worker(barrier);
new Thread(work).start();
}
}
private class Worker implements Runnable
{
private final CyclicBarrier
bar;
public Worker(CyclicBarrier
bar)
{
this .bar=bar;
}
public void run()
{
//dosome
work
//...........
try {
bar.await();
} catch (InterruptedException
e)
{
} catch (BrokenBarrierException
e)
{
}
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
package whut.concurrentmodel;
import java.util.Collections;
import java.util.HashSet;
import java.util.Set;
import java.util.concurrent.Semaphore;
//利用Semaphore来实现集合的边界处理
public class SemaphoreTest<T>
{
private final Set<T>
set;
private final Semaphore
sem;
public SemaphoreTest( int bound)
{
this .set=Collections.synchronizedSet( new HashSet<T>()); //同步处理
//设置Semaphore的大小,用于设置set的边界,控制同时多少个访问
sem= new Semaphore(bound);
}
//add操作成功则会返回true,否则返回false
public boolean add(T
o) throws InterruptedException
{
sem.acquire(); //获取信号量
boolean wasAdded= false ;
try {
wasAdded=set.add(o); //同步访问这些方法
return wasAdded;
} finally {
if (!wasAdded)
sem.release(); //释放信号量,如果没有添加成功
}
}
public boolean remove(Object
o)
{
boolean wasRemoved=set.remove(o); //成功移除返回true
if (wasRemoved)
sem.release(); //释放信号量
return wasRemoved;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
package whut.future;
import java.util.Random;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
//利用FutureTask来实现future设计模式
public class FutureTaskDemo
{
public static void main(String[]
args) {
//
TODO Auto-generated method stub
MyCallale
mc = new MyCallale();
FutureTask<String>
myfuture = new FutureTask<String>(mc);
new Thread(myfuture).start();
System.out.println( "operate
other thing" );
try {
System.out.println( "data1=" +
myfuture.get());
} catch (InterruptedException
e) {
} catch (ExecutionException
e) {
}
}
}
class MyCallale implements Callable<String>
{
@Override
public String
call() throws Exception
{
//
TODO Auto-generated method stub
int i
= 0 ;
Random
r = new Random();
StringBuilder
sb = new StringBuilder();
int res
= 0 ;
while (i
< 100000000 )
{
i++;
res
= r.nextInt(i);
}
sb.append(res);
return sb.toString();
}
}
|