Spark Scala:从另一个数据帧更新数据帧列的值
问题描述:
a =
+------------+------------+------+
| Name| Nationality|Salary|
+------------+------------+------+
| A. Abbas| Iraq| €2K|
| A. Abdallah| France| €1K|
|A. Abdennour| Tunisia| €31K|
b =
+------------+------------+
| Name|Salary |
+------------+------------+
| A. Abbas|€4K |
| A. Abdallah|€1K |
|A. Abdennour|€33K |
预期的 updatedDF 应如下所示:
the expected updatedDF should look like below:
+------------+------------+------+
| Name| Nationality|Salary|
+------------+------------+------+
| A. Abbas| Iraq| €4K|
| A. Abdallah| France| €1K|
|A. Abdennour| Tunisia| €33K|
我在 spark scala 代码中尝试过:
I tried in spark scala code like :
updatedDF = a.join(b, Seq("Name"), "inner")
updatedDF.show()
但是在加入后我的输出中有重复.如何在不重复的情况下合并两个数据帧?
But I have duplication in my output after doing join. how I can merge between tow data frames with out duplication ?
答
如果您有重复,那意味着名称列不是唯一的.我建议尝试追加要在连接中使用的索引列,然后将其删除:
If you have duplication, that means name column is not unique. I suggest to try append index column to be used in join, then drop it:
// Add index now...
a = addColumnIndex(a).withColumn("index", monotonically_increasing_id)
println("1- a count: " + a.count())
// Add index now...
b = addColumnIndex(b).withColumn("index", monotonically_increasing_id)
println("b count: " + b.count())
def addColumnIndex(df: DataFrame) = {
spark.sqlContext.createDataFrame(
df.rdd.zipWithIndex.map {
case (row, index) => Row.fromSeq(row.toSeq :+ index)
},
StructType(df.schema.fields :+ StructField("index", LongType, false)))
}
ab = a.join(b, Seq("index", "Name"), "inner").drop(a.col("Salary")).drop(a.col("index"))
println("3- ab count: " + ab.count())