将数据帧中的NaN转换为零
我有字典并使用创建了熊猫
汽车= pd.DataFrame.from_dict(cars_dict,orient ='index')
和
对索引进行排序(列按字母顺序
汽车= cars.sort_index(axis = 1)
排序后,我发现DataFrame具有NaN,我不确定
如果真的是np.nan值?
print(cars.isnull().any())并且所有列都显示为false.
I have dictionary and created Pandas using
cars = pd.DataFrame.from_dict(cars_dict, orient='index')
and
sorted the index (columns in alphabetical order
cars = cars.sort_index(axis=1)
After sorting I noticed the DataFrame has NaN and I wasn't sure
if the really np.nan values?
print(cars.isnull().any()) and all column shows false.
我尝试了不同的方法将那些"NaN"值转换为零,这是我想要做的,但是没有一个在工作. 我尝试了replace和fillna方法,但没有任何效果 以下是我的数据框示例.
I have tried different method to convert those "NaN" values to zero which is what I want to do but non of them is working. I have tried replace and fillna methods and nothing works Below is sample of my dataframe..
speedtest size
toyota 65 NaN
honda 77 800
如果值是字符串,则对它们使用replace
或np.where
:
Either use replace
or np.where
on the values if they are strings:
df = df.replace('NaN', 0)
或者,
df[:] = np.where(df.eq('NaN'), 0, df)
或者,如果它们实际上是NaN(似乎不太可能),则使用fillna
:
Or, if they're actually NaNs (which, it seems is unlikely), then use fillna
:
df.fillna(0, inplace=True)
或者,要同时处理这两种情况,请使用apply
+ pd.to_numeric
(速度稍慢,但可以保证在任何情况下都可以使用):
Or, to handle both situations at the same time, use apply
+ pd.to_numeric
(slightly slower but guaranteed to work in any case):
df = df.apply(to_numeric, errors='coerce').fillna(0, downcast='infer')
感谢piRSquared!
Thanks to piRSquared for this one!