python pandas数据框根据日期条件切片
我可以使用python datetime对象读取和切割大熊猫数据帧,但是我被迫仅在索引中使用现有日期。例如,这样做:
I am able to read and slice pandas dataframe using python datetime objects, however I am forced to use only existing dates in index. For example, this works:
>>> data
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 252 entries, 2010-12-31 00:00:00 to 2010-04-01 00:00:00
Data columns:
Adj Close 252 non-null values
dtypes: float64(1)
>>> st = datetime.datetime(2010, 12, 31, 0, 0)
>>> en = datetime.datetime(2010, 12, 28, 0, 0)
>>> data[st:en]
Adj Close
Date
2010-12-31 593.97
2010-12-30 598.86
2010-12-29 601.00
2010-12-28 598.92
但是,如果我使用不存在的开始或结束日期DF,我得到python KeyError。
However if I use a start or end date that is not present in the DF, I get python KeyError.
我的问题:如何查询日期范围的数据框对象?即使开始和结束日期不存在于DataFrame中。大熊猫是否允许基于范围的切片?
My Question : How do I query the dataframe object for a date range; even when the start and end dates are not present in the DataFrame. Does pandas allow for range based slicing?
我使用的是大熊猫版本0.10.1
I am using pandas version 0.10.1
使用 searchsorted
先找到最近的时间,然后使用它切片。
Use searchsorted
to find the nearest times first, and then use it to slice.
In [15]: df = pd.DataFrame([1, 2, 3], index=[dt.datetime(2013, 1, 1), dt.datetime(2013, 1, 3), dt.datetime(2013, 1, 5)])
In [16]: df
Out[16]:
0
2013-01-01 1
2013-01-03 2
2013-01-05 3
In [22]: start = df.index.searchsorted(dt.datetime(2013, 1, 2))
In [23]: end = df.index.searchsorted(dt.datetime(2013, 1, 4))
In [24]: df.ix[start:end]
Out[24]:
0
2013-01-03 2