Bomb Game HDU
题意:
就是给出n对坐标,每对只能选一个,以选出来的点为圆心,半径自定义,画圆,而这些圆不能覆盖,求半径最小的圆的最大值
解析:
看到最x值最x化,那二分变为判定性问题,然后。。。然后我就没想到。。。
好的吧。。。2-sat 还能在不是一对的两个值之间建边。。。求出连通分量后 看一对中的两个坐标是否在一个连通分量中
在一个说明半径太小 要加大 反之。。反之。
因为涉及小数 要用eps
#include <iostream> #include <cstdio> #include <sstream> #include <cstring> #include <map> #include <cctype> #include <set> #include <vector> #include <stack> #include <queue> #include <algorithm> #include <cmath> #include <bitset> #define eps 1e-8 #define rap(i, a, n) for(int i=a; i<=n; i++) #define rep(i, a, n) for(int i=a; i<n; i++) #define lap(i, a, n) for(int i=n; i>=a; i--) #define lep(i, a, n) for(int i=n; i>a; i--) #define rd(a) scanf("%d", &a) #define rlld(a) scanf("%lld", &a) #define rc(a) scanf("%c", &a) #define rs(a) scanf("%s", a) #define pd(a) printf("%d ", a); #define plld(a) printf("%lld ", a); #define pc(a) printf("%c ", a); #define ps(a) printf("%s ", a); #define MOD 2018 #define LL long long #define ULL unsigned long long #define Pair pair<int, int> #define mem(a, b) memset(a, b, sizeof(a)) #define _ ios_base::sync_with_stdio(0),cin.tie(0) //freopen("1.txt", "r", stdin); using namespace std; const int maxn = 1e5 + 10, INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff; int n; vector<int> G[maxn]; int vis[maxn], low[maxn], scc_clock, scc_cnt, sccno[maxn]; stack<int> S; struct node { int x, y; }Node[maxn]; void dfs(int u) { vis[u] = low[u] = ++scc_clock; S.push(u); for(int i = 0; i < G[u].size(); i++) { int v = G[u][i]; if(!vis[v]) { dfs(v); low[u] = min(low[u], low[v]); } else if(!sccno[v]) { low[u] = min(low[u], vis[v]); } } if(low[u] == vis[u]) { scc_cnt++; for(;;) { int x = S.top(); S.pop(); sccno[x] = scc_cnt; if(x == u) break; } } } double dis(node a, node b) { return sqrt((double)(a.x - b.x) * (a.x - b.x) + (double)(a.y - b.y) * (a.y - b.y)); } void build(double mid) { for(int i = 0; i < maxn; i++) G[i].clear(); for(int i = 0; i < n * 2; i++) for(int j = 0; j < n * 2; j++) if(i / 2 != j / 2 && dis(Node[i], Node[j]) < mid) { G[i].push_back(j ^ 1); G[j].push_back(i ^ 1); } } void init() { mem(vis, 0); mem(low, 0); mem(sccno, 0); scc_cnt = scc_clock = 0; } bool check() { for(int i = 0; i < n * 2; i += 2) { if(sccno[i] == sccno[i ^ 1]) return false; } return true; } int main() { while(cin >> n) { for(int i = 0; i < n; i++) { cin >> Node[i << 1].x >> Node[i << 1].y >> Node[(i << 1) + 1].x >> Node[(i << 1) + 1].y; } double l = 0, r = INF; while(r - l > eps) { init(); double mid = l + (r - l) /(double) 2; build(mid * 2); for(int i = 0; i < n * 2; i++) if(!vis[i]) dfs(i); if(check()) l = mid; else r = mid; } printf("%.2f ", l); } return 0; }