Keras Val_acc很好,但是对相同数据的预测很差
我正在使用Keras进行CNN两类分类.训练时,我的val_acc高于95%.但是,当我为相同的验证数据预测结果时,acc小于60%,那有可能吗?这是我的代码:
I am using Keras for a CNN two class classification. While training my val_acc is above 95 percent. But when I predict result for the same validation data the acc is less than 60 percent, is that even possible? This is my Code:
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras.callbacks import TensorBoard
from keras.preprocessing import image
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(1337) # for reproducibility
%matplotlib inline
img_width, img_height = 230,170
train_data_dir = 'data/Train'
validation_data_dir = 'data/Validation'
nb_train_samples = 13044
nb_validation_samples = 200
epochs =14
batch_size = 32
if K.image_data_format() == 'channels_first':
input_shape = (1, img_width, img_height)
else:
input_shape = (img_width, img_height, 1)
model = Sequential()
model.add(Convolution2D(32, (3, 3),data_format='channels_first' , input_shape=(1,230,170)))
convout1 = Activation('relu')
model.add(convout1)
convout2 = MaxPooling2D(pool_size=(2,2 ), strides= None , padding='valid', data_format='channels_first')
model.add(convout2)
model.add(Convolution2D(32, (3, 3),data_format='channels_first'))
convout3 = Activation('relu')
model.add(convout3)
model.add(MaxPooling2D(pool_size=(2, 2), data_format='channels_first'))
model.add(Convolution2D(64, (3, 3),data_format='channels_first'))
convout4 = Activation('relu')
model.add(convout4)
convout5 = MaxPooling2D(pool_size=(2, 2), data_format='channels_first')
model.add(convout5)
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
train_datagen = ImageDataGenerator(rescale=1. / 255,
shear_range=0,
zoom_range=0.2,
horizontal_flip=False,
data_format='channels_first')
test_datagen = ImageDataGenerator(rescale=1. / 255,
data_format='channels_first')
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary',
color_mode= "grayscale",
shuffle=True
)
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary',
color_mode= "grayscale",
shuffle=True
)
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
shuffle=True
)
第37/37集
407/407 [==============]-1775s 4s/step-损耗:0.12-acc:0.96-val_loss:0.02-val_acc:0.99
407/407[==============] - 1775s 4s/step - loss: 0.12 - acc: 0.96 - val_loss: 0.02 - val_acc: 0.99
#Prediction:
test_data_dir='data/test'
validgen = ImageDataGenerator(horizontal_flip=False, data_format='channels_first')
test_gen = validgen.flow_from_directory(
test_data_dir,
target_size=(img_width, img_height),
batch_size=1,
class_mode='binary',
shuffle=False,
color_mode= "grayscale")
preds = model.predict_generator(test_gen)
在下面的输出中,约有7张图像属于0类.我对0类验证数据的所有100张图像尝试了相同的图像,只有15张图像被预测为0类,其余图像被预测为1类.
In the below output about 7 images belong to class 0. I tried the same for all 100 images of the class 0 validation data and only 15 images were predicted as class 0 and remaining was predicted as class 1
Found 10 images belonging to 1 classes.
[[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 0.]
[ 0.]
[ 1.]]
您没有像训练和验证图像中那样按1./255缩放测试图像.理想情况下,测试数据的统计信息应与培训数据相似.
You are not scaling your test images by 1./255 as you have in your training and validation images. Ideally, the statistics of your test data should be similar to the training data.