过滤和选择使用python pandas制作的数据透视表
我正在努力使用Python pandas
包中的层次索引。具体来说,我不明白如何在数据透视后过滤和比较数据。
I'm struggling with hierarchical indexes in the Python pandas
package. Specifically I don't understand how to filter and compare data in rows after it has been pivoted.
以下是文档中的示例表:
Here is the example table from the documentation:
import pandas as pd
import numpy as np
In [1027]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 6,
'B' : ['A', 'B', 'C'] * 8,
'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
'D' : np.random.randn(24),
'E' : np.random.randn(24)})
In [1029]: pd.pivot_table(df, values='D', rows=['A', 'B'], cols=['C'])
Out[1029]:
C bar foo
A B
one A -1.154627 -0.243234
B -1.320253 -0.633158
C 1.188862 0.377300
three A -1.327977 NaN
B NaN -0.079051
C -0.832506 NaN
two A NaN -0.128534
B 0.835120 NaN
C NaN 0.838040
我想要分析如下:
1)在列属性上过滤此表,例如选择负 foo
的行:
1) Filter this table on column attributes, for example selecting rows with negative foo
:
C bar foo
A B
one A -1.154627 -0.243234
B -1.320253 -0.633158
three B NaN -0.079051
two A NaN -0.128534
2)比较不同的 A
系列组之间剩余的 B
系列值?我不知道如何访问这些信息: {'one':['A','B'],'two':['A'],'three':['B'] }
并确定哪个系列 B
值对每个键是唯一的,或者在多个键组中看到等等。
2) Compare the remaining B
series values between the distinct A
series groups? I am not sure how to access this information: {'one':['A','B'], 'two':['A'], 'three':['B']}
and determine which series B
values are unique to each key, or seen in multiple key groups, etc
有没有办法直接在数据透视表结构中执行此操作,或者我是否需要将其转换回 pandas
dataframe
?
Is there a way to do this directly within the pivot table structure, or do I need to convert this back in to a pandas
dataframe
?
更新:我认为此代码是朝着正确方向迈出的一步。它至少让我可以访问此表中的各个值,但我仍然在对系列值进行硬编码:
Update: I think this code is a step in the right direction. It at least lets me access individual values within this table, but I am still hard-coding the series vales:
table = pivot_table(df, values='D', rows=['A', 'B'], cols=['C'])
table.ix['one', 'A']
数据透视表返回一个DataFrame,因此您只需按以下步骤进行过滤:
Pivot table returns a DataFrame so you can simply filter by doing:
In [15]: pivoted = pivot_table(df, values='D', rows=['A', 'B'], cols=['C'])
In [16]: pivoted[pivoted.foo < 0]
Out[16]:
C bar foo
A B
one A -0.412628 -1.062175
three B NaN -0.562207
two A NaN -0.007245
您可以使用
pivoted.ix['one']
选择所有A系列组
或
pivoted.ix['one', 'A']
选择不同的A和B系列组
to select distinct A and B series groups