比较两个数组中的元素,并使用python当一个值大于另一个值时返回True
我正在尝试在python中编写一个for循环,该循环将一个数组px
中的每个ith元素与另一个数组py
中的ith元素进行比较.如果px
中的元素大于或等于py
的元素,那么我要注意该值为True
或1.
I'm trying to write a for loop in python that compares each ith element in one array px
to the ith element in another array py
. If the element in px
is greater than or equal to that of py
than I want to note that value as True
or 1.
这是一些代码.
import pandas as pd
import random
px = np.random.normal(loc=0, scale=1, size=1000)
py = np.random.normal(loc=0, scale=1, size=1000)
for x, y in zip(px, py):
print("{}% {}".format(x, y))
if px[i] >= py[i]:
px['status'] = True
if px[i] < py[i]:
px['status'] = False
最终数据框应如下所示:
The final dataframe should look something like this:
px py status
-2.24239571e-01 -1.83834445e+00 False
1.20102447e+00 5.01755172e-03 False
8.82060986e-02 -2.55639665e-02 True
我知道我的for循环有一些问题.
I know I have some problems with my for loop.
如果要提高速度,则不应遍历数组.相反,可以使用df['status'] = px >= py
在矢量化操作中进行比较.从您的问题尚不清楚数据是否已存在于数据框中,因此从头开始:
You should not be iterating through arrays if you want speed. Instead, the comparison can be done in a vectorized operation using df['status'] = px >= py
. It's not clear from your question if the data is already in a Dataframe, so from scratch:
import numpy as np
import pandas as pd
px = np.random.normal(loc=0, scale=1, size=1000)
py = np.random.normal(loc=0, scale=1, size=1000)
df = pd.DataFrame({'px': px, 'py': py, 'status': px >= py})
print(df.head())