如何使用'in'和'not in'像SQL一样过滤Pandas数据框
问题描述:
如何实现 SQL 的 IN
和 NOT IN
的等效项?
How can I achieve the equivalents of SQL's IN
and NOT IN
?
我有一个包含所需值的列表.场景如下:
I have a list with the required values. Here's the scenario:
df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']})
countries_to_keep = ['UK', 'China']
# pseudo-code:
df[df['country'] not in countries_to_keep]
我目前的做法如下:
df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']})
df2 = pd.DataFrame({'country': ['UK', 'China'], 'matched': True})
# IN
df.merge(df2, how='inner', on='country')
# NOT IN
not_in = df.merge(df2, how='left', on='country')
not_in = not_in[pd.isnull(not_in['matched'])]
但这似乎是一个可怕的混杂.有人可以改进吗?
But this seems like a horrible kludge. Can anyone improve on it?
答
您可以使用 pd.Series.isin
.
You can use pd.Series.isin
.
对于IN"使用:something.isin(somewhere)
或者对于NOT IN":~something.isin(somewhere)
Or for "NOT IN": ~something.isin(somewhere)
作为一个有效的例子:
import pandas as pd
>>> df
country
0 US
1 UK
2 Germany
3 China
>>> countries_to_keep
['UK', 'China']
>>> df.country.isin(countries_to_keep)
0 False
1 True
2 False
3 True
Name: country, dtype: bool
>>> df[df.country.isin(countries_to_keep)]
country
1 UK
3 China
>>> df[~df.country.isin(countries_to_keep)]
country
0 US
2 Germany