如何在SQLAlchemy中使用 pandas 进行upsert
我通过 SqlAlchemy
在PostgreSQL中创建了一个表:
I created a table in postgresql by SqlAlchemy
:
my_table = Table('test_table', meta,
Column('id', Integer,primary_key=True,unique=True),
Column('value1', Integer),
Column('value2', Integer)
)
我想通过像这样的数据框来向上插入此表:
And I want to upsert this table by a dataframe like:
id value1 value2
0 1 32.0 1
1 2 2.0 32
2 3 NaN 3
3 4 213.0 23
我尝试用我的代码按 SqlAlchemy 中的$ c> on_conflict_do_update 如下:
I tried my code to upsert it by on_conflict_do_update
in SqlAlchemy
as follows:
insert_statement = sqlalchemy.dialects.postgresql.insert(my_table,).values(df.to_dict(orient='records'))
upsert_statement = insert_statement.on_conflict_do_update(
index_elements=['id'],
set_= df.to_dict(orient='dict')
)
conn.execute(upsert_statement)
但是显示此错误:
(psycopg2.ProgrammingError)无法适应类型'dict'
(psycopg2.ProgrammingError) can't adapt type 'dict'
我的SqlAlchemy版本是1.2.10,而psycopg2版本是2.7.5。有人可以帮我吗?
My SqlAlchemy version is 1.2.10, and psycopg2 version is 2.7.5. Can someone help me?
set _
参数需要一个以列名作为键,以表达式或文字作为值进行映射,但是您要传递一个嵌套字典作为值的映射,即 df.to_dict(orient ='dict')
。错误无法适应类型'dict'是SQLAlchemy将这些字典作为文字传递给Psycopg2的结果。
The set_
parameter expects a mapping with column names as keys and expressions or literals as values, but you're passing a mapping with nested dictionaries as values, i.e. df.to_dict(orient='dict')
. The error "can't adapt type 'dict'" is the result of SQLAlchemy passing those dictionaries to Psycopg2 as "literals".
因为您尝试插入多行在使用VALUES子句的单个INSERT中,您应该使用 已排除
。 EXCLUDED是代表要插入的行的特殊表。
Because you are trying to insert multiple rows in a single INSERT using the VALUES clause, you should use excluded
in the SET actions. EXCLUDED is a special table representing the rows meant to be inserted.
insert_statement = postgresql.insert(my_table).values(df.to_dict(orient='records'))
upsert_statement = insert_statement.on_conflict_do_update(
index_elements=['id'],
set_={c.key: c for c in insert_statement.excluded if c.key != 'id'})
conn.execute(upsert_statement)