MachineLearning Exercise 五 :Regularized Linear Regression and Bias vs Variance
MachineLearning Exercise 5 :Regularized Linear Regression and Bias vs Variance
之前本打算把ML每一堂课做个笔记来着,现在coursera内容太详细了,再接着截图做笔记感觉太逗逼了,就把课后编程练习做下笔记吧。。。
linearRegCostFunction
pre = X*theta-y; J = (1/(2*m))*(pre'*pre+lambda*(theta(2:end)'*theta(2:end))); grad = (1/m)*(pre'*X)'; temp = theta; temp(1) = 0; grad = grad + (lambda/m)*(temp);
learningCurve
for i = 1:m theta = trainLinearReg(X(1:i,:), y(1:i), lambda); error_train(i) = linearRegCostFunction(X(1:i,:), y(1:i), theta, 0); error_val(i) = linearRegCostFunction(Xval, yval, theta, 0); end
validationCurve
for i = 1:length(lambda_vec) lambda = lambda_vec(i); theta = trainLinearReg(X, y, lambda); error_train(i) = linearRegCostFunction(X, y, theta, 0); error_val(i) = linearRegCostFunction(Xval, yval, theta, 0); end
polyFeatures
for i =1:p X_poly(:,i) = X.^i; end
其它练习会抽空补上,至于解释,且听下回分解~~