正则化 L1 L2 L1和L2正则化的直观理解

机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ2-norm,中文称作L1正则化L2正则化,或者L1范数L2范数

L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。下图是Python中Lasso回归的损失函数,式中加号后面一项α||w||1即为L1正则化项。

L1正则化和L2正则化的说明如下:

  • L1正则化是指权值向量||w||1
  • L2正则化是指权值向量||w||2

一般都会在正则化项之前添加一个系数,Python中用λ表示。这个系数需要用户指定。

那添加L1和L2正则化有什么用?下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。

  • L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
  • L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合
  • 稀疏模型与特征选择

    上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?

    稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。

    这部分内容将解释为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的),以及为什么L2正则化可以防止过拟合

    L1正则化和特征选择

    假设有如下带L1正则化的损失函数: 

     
    (1)J=J0+α∑w|w|

    其中w1w2的二维平面上画出来。如下图:

    正则化 L1 L2
L1和L2正则化的直观理解 
    图1 L1正则化

    图中等值线是L其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。

    而正则化前面的系数w可以取到很小的值。

    类似,假设有如下带L2正则化的损失函数: 

     
    (2)J=J0+α∑ww2

    同样可以画出他们在二维平面上的图形,如下:

    正则化 L1 L2
L1和L2正则化的直观理解 
    图2 L2正则化

    二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此w2等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。

    L2正则化和过拟合

    拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。

    那为什么L2正则化可以获得值很小的参数?

    以线性回归中的梯度下降法为例。假设要求的参数为hθ(x)是我们的假设函数,那么线性回归的代价函数如下: 

     
    (3)J(θ)=12m∑i=1m(hθ(x(i))−y(i))2

    那么在梯度下降法中,最终用于迭代计算参数θ的迭代式为: 
     
    (4)θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))xj(i)

    其中α是learning rate. 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子: 
     
    (5)θj:=θj(1−αλm)−α1m∑i=1m(hθ(x(i))−y(i))xj(i)

    其中θ是不断减小的。

    最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。

  • 原文出处:https://blog.****.net/jinping_shi/article/details/52433975
  • 感谢该文作者,本文主要留档后期复习归纳总结(非原创)