andrew ng 深度学习 网易云课堂课程

andrew ng 深度学习 网易云课堂课程

输入数据为非结构化数据图片时,输入向量的表示形式是将一幅图像的三基元矩阵分别抻开,形成一个长向量:

andrew ng 深度学习 网易云课堂课程

先从逻辑回归讲起,基本的符号表示如下,使用sigmoid函数是为了将计算出来的值投影到0-1的范围内,从而表示预测值是猫的概率:

andrew ng 深度学习 网易云课堂课程

代价函数的定义,代价函数其实就是基于训练集样本的误差总和的平均值

andrew ng 深度学习 网易云课堂课程 

向量化:能不用for循环就不使用for循环,使用内置的函数会使得运算速度更快

逻辑回归的向量化运算过程

andrew ng 深度学习 网易云课堂课程

andrew ng 深度学习 网易云课堂课程

andrew ng 深度学习 网易云课堂课程

一些numpy的使用技巧:

andrew ng 深度学习 网易云课堂课程

神经网络的表示形式

andrew ng 深度学习 网易云课堂课程

andrew ng 深度学习 网易云课堂课程

andrew ng 深度学习 网易云课堂课程

andrew ng 深度学习 网易云课堂课程

多个训练样本时横向堆叠:

andrew ng 深度学习 网易云课堂课程

 andrew ng 深度学习 网易云课堂课程

常用的激活函数

andrew ng 深度学习 网易云课堂课程

参数的核对方法:

andrew ng 深度学习 网易云课堂课程

andrew ng 深度学习 网易云课堂课程

andrew ng 深度学习 网易云课堂课程