字典的字典对大 pandas 数据框的字典-将多索引行更改为列
我有一本这样的字典:
my_dict = {'Key': {'Service': {'Number': 61, 'Percent': 2.54 }, 'Service2': {'Number': 42, 'Percent': 2.2 } }, 'Key2': {'Service3': {'Number': 8, 'Percent': 2.74}, 'Service2': {'Number': 52, 'Percent': 2.5 } }}
我正在尝试将其转换为熊猫数据框.我有这个解决方案可以工作
I'm trying to convert this to a pandas dataframe. I got this solution to work
pandas.concat(map(pandas.DataFrame, my_dict.itervalues()), keys=my_dict.keys()).stack().unstack(0)
但是,我的问题是我得到一个表,其中行索引是Service& Service的多指标.数字/百分比.相反,我希望索引仅是出现的不同服务(而不是多索引),并且希望这些列像现在一样是键,但其中第1列部分是Number,第2列部分是所有Keys百分比,如果有道理的话.转置不是我想要的,因为我不希望整个索引更改,而只是更改Number/Percent部分.从上面我写的字典将其转换为数据框后,我希望它看起来像这样:
However, my problem is that that I get a table where the row index is a multindex of Service & Number/Percent. Instead, I want the index to be only the different Services that come up (not a multiindex), and want the columns to be the Keys like they are now, but with 1 column section being Number and the 2nd column section being all the Keys with percent, if that makes sense. Transposing is not what I want, because I don't want the entire index to change, just the Number/Percent part. I want it to look like this, after converting it to a dataframe from the dictionary I wrote above:
Number Percent
Key Key2 Key Key2
Service 61 NaN 2.54 NaN
Service2 42 52 2.2 2.5
Service3 NaN 8 NaN 2.74
对此有何建议?
pd.concat({k: pd.DataFrame(v) for k, v in my_dict.items()})
Service Service2 Service3
Key Number 61.00 42.0 NaN
Percent 2.54 2.2 NaN
Key2 Number NaN 52.0 8.00
Percent NaN 2.5 2.74
pd.concat({k: pd.DataFrame(v) for k, v in my_dict.items()}, axis=1).stack(0).T
Number Percent
Key Key2 Key Key2
Service 61.0 NaN 2.54 NaN
Service2 42.0 52.0 2.20 2.50
Service3 NaN 8.0 NaN 2.74
这不依赖于理解
This doesn't rely on comprehensions
pd.DataFrame(my_dict).stack().apply(pd.Series).unstack()
# pandas.DataFrame(i).stack().apply(pandas.Series).unstack()
Number Percent
Key Key2 Key Key2
Service 61.0 NaN 2.54 NaN
Service2 42.0 52.0 2.20 2.50
Service3 NaN 8.0 NaN 2.74