[北航矩阵理论A]课程笔记 [北航矩阵理论A]课程笔记
一、特征值
-
特征根相关:
设任一方阵 (A = (a_{ij})_{n imes n} in C^{n imes n})- 特征多项式 (T(lambda)=|lambda I- A| = Pi(lambda-lambda_i))
- 全体特征根(含重复):(lambda(A) = {lambda_1,cdots,lambda_n}),叫做矩阵的 “谱”
- 特征值两个性质:
- (Sigma lambda_i = tr(A)) 特征根和等于矩阵迹和
- (Pi lambda_i = det(A)) 特征根积等于行列式值
- (P可逆,P^{-1}AP = B),叫做A的一个相似变换,相似变换特征值不变
-
分块求特征值:
- 当矩阵可化为分块上(下)三角时,求主对角线上的矩阵块的特征值,并求并集,保留重复
[A = igg( egin{matrix} B & O \ C & D end{matrix}igg) ][A = igg( egin{matrix} B & C \ O & D end{matrix}igg) ] -
特征根观察法:(A = (a_{ij})_{n imes n})
- 若 (A) 中每行和恒为常数 (a),则(lambda_1 = a in lambda(A)),且 (X = igg(egin{matrix} 1\...\1end{matrix}igg))为对应的特征向量
- 若 (A) 中每列和恒为常数 (a),则...........,但(X = igg(egin{matrix} 1\...\1end{matrix}igg))不一定为特征向量
-
平移法则:特征向量不变
- (A pm CI)与 (A)有相同的特征向量,且((A pm CI)X_i = (lambda_i pm C)X_i)
-
多项式法则:
- (f(A))与(A)的特征向量相同,特征值分别为(f(lambda),lambda)
二、Jordan形
-
三角阵定理:
- 任一方阵 (A),存在可逆阵 (P) 使A相似于 (D) (上三角)
-
接三角阵定理:
- 可选取P使三角形简化为双线上三角,此时(D)被称为(A)的(Jordan)形
- 其中,重复根排在一起 ,(* = 0/1);不同根之间 (* = 0)
[exists P,P^{-1}AP = D = left( egin{matrix} lambda_1 & * & cdots & 0\ vdots & lambda_2 & * &vdots\ vdots & vdots & ddots &*\s 0 & 0 & 0 & lambda_n \ end{matrix} ight)_{n imes n} ]
- 可选取P使三角形简化为双线上三角,此时(D)被称为(A)的(Jordan)形
-
若当块定义:
- 一阶若当块是一个数 ((a))
- k阶若当块(k重根(lambda))形为:
[J_k(a) = left( egin{matrix} a & 1 & cdots&cdots & 0\ vdots & a & 1 &cdots &vdots\ vdots & vdots & ddots &ddots &1\ 0 & 0 & 0 & 0 & a end{matrix} ight)_{k imes k} ]
-
Jordan形定理:
- 任一 :(A = (a_{ij})_{n imes n} in C^{n imes n},exists P)
- (A)共有(t)个不同的特征根,每个特征根分别为(k_i)重特征根
- 其中(J_{k_i}^{(lambda_i)})为若当块
[p = left( egin{matrix} J_{k_1}^{(lambda_1)} & 0 & cdots&cdots & 0\ vdots & J_{k_2}^{(lambda_2)} & 0 &cdots &vdots\ vdots & vdots & ddots &ddots & 0 \ 0 & 0 & 0 & 0 & J_{k_t}^{(lambda_t)} end{matrix} ight)_{n imes n} ]
- 任一 :(A = (a_{ij})_{n imes n} in C^{n imes n},exists P)
三、一些基础
-
共轭转置:
- (A^H = overline{A}^T)
- 一些性质:
- (overline{AB} = ar A ar B)
- ((AB)^H = B^HA^H)
- ((ABC)^H = C^HB^HA^H)
- ((A+B)^H = A^H + B^H)
- ((kA)^H = ar k A^H)
- 几个公式:
- (r(A^HA) = r(A) = r(AA^H))
- (AX = 0,A^HAX = 0) 有相同解:(X^H(A^HAX) = 0 Rightarrow |AX|^2 = 0),所以这两个方程解空间维数相同,所以上一行三个矩阵的秩相同
-
向量模长:
- 模公式:(|X|^2 = X^HX = Sigma ar x_i x_i = Sigma |x_i|^2)
- 一些性质:
- (|kX| = |k||X|)
- 一些公式:
- (frac{X}{|X|})为(vec X)方向的单位向量
- (tr(X^HX) = tr(XX^H) = |X|^2)
-
(A = (a_{ij})_{n imes n} in C^{n imes n},tr(A^HA) = tr(AA^H) = sum sum |a_{ij}|^2)
- 若 (tr(AA^H) = 0或tr(A^HA) = 0,则A = 0)
- 若 (AA^H = 0或A^HA = 0,则A = 0)
-
(C^{n imes n})内积:
- 定义((X|Y) = Y^HX),(X),(Y)为列向量
- 内积公理
- (X eq 0,(X|X)>0)
- (overline{(Y|X)} = (X|Y))
- ((kX|Y) = k(X|Y),(X|kY) = ar k(X|Y))
- ((X+Y|Z) = (X|Z) + (Y|Z),(X|Y+Z) = (X|Y) + (X|Z))
-
正交:
- 正交则内积为0
- 正交组一定是线性无关组
- 菱形对角线在实空间内正交
-
酉阵
- 定义:
- (A = A_{n imes p})中各列相互正交,称(A)为预备半酉阵
- (B = B_{n imes p})中各列相互正交且都为单位向量,即 (B^HB = I_P),称(B)为半酉阵
- 方阵(C)中各列相互正交且都为单位向量,即 (C^HC = I_P),称(C)为半酉阵
- 常用酉阵等价条件:
- (A^HA = I_n Leftrightarrow A^{-1} = A^H)
- (A^HA = AA^H = I)
- 性质:
- 保内积:((AX,AY) = (X,Y))
- 保长:(|AX|^2 = |X|^2)
- 保正交:(X_1 perp X_2 perpcdotsperp X_n Rightarrow AX_1 perp AX_2 perpcdotsperp AX_n)
- 定义:
-
镜面阵
[A = I - frac{2XX^H}{|X|^2} ]- 性质:
- (A^H = A)
- (A^2 = I)
- (A)为酉阵,(A^{-1} = A^H)
- (AX = -X)
- (if X perp Y,AY = Y)
- (lambda(A) = {-1,1,cdots,1},det(A) = -1)
- 结论:
- ((alpha,eta))为实数,两向量不相等,则存在镜面阵使得 (Aalpha = eta)且
[A = I - frac{2(alpha-eta)(alpha-eta)^H}{(alpha-eta)^2} ]- 证明:由镜面公式,取(X = alpha - eta),使用性质4、5
- 引理(构造镜面阵)
- (C^{n})中任一 (alpha = (alpha_1,cdots,alpha_n)^T eq vec 0),令(eta = (lambda|alpha|,0,cdots,0)^T)
[lambda = egin{cases} frac{alpha_1}{|alpha_1|}& alpha_1 = 0\ 1& alpha_1 eq 0 end{cases}]则存在镜面阵 (A) 使得 (Aalpha = eta)
- 性质:
-
Hermite阵
[A^H = A,Ain C^{n imes n} ]斜Hermite:(A^H = -A),则(frac{A}{i},Ai)为Hermite
- 一些性质:
- 若A为Hermite,则存在酉阵Q使得(Q^{-1}AQ = D)为正线上三角,且主对角线元素均为实数
- (f(X) = X^HAX)只取实数
- (lambda_1 = frac{X^HAX}{|X|^2}),其中X为非零特征向量
- (A = A^H,A ge 0 Leftrightarrow lambda_i ge 0)
-
(A = A^H,A > 0 Leftrightarrow lambda_i > 0)
- (Rightarrow : X^HAX > 0,lambda_i = frac{X^HAX}{|X|^2}>0)
- (Leftarrow : A = A^H Rightarrow Q^HAQ = D),D的主对角线为特征值,(Y^H(Q^HAQ)Y = Y^HDY = sumlambda_i|y_i|^2>0),记((QY)^HA(QY)>0,X = QY)
- 若(Age0 Rightarrow exists B B^2 =A,B ge 0,)
- (A = A^H Rightarrow Q^HAQ = D,Q)为酉阵,D的主对角线为特征值,且均大于等于0,令(B = Qsqrt{D}Q^H),易得B为Hermite,且B相似于(sqrt{D}),B为半正定
- 任一(A = A_{m imes n},A^HA,AA^H ge 0),且都是Hermite
- 任一方阵(A = A_{n imes n},A + A^H)是Hermite
- 定理:
- 若(A = A^H in C^{n imes n}),则A恰有n个正交的特征向量$
- (A = A^H Rightarrow Q^HAQ = D,Q)为酉阵,且Q每一列都是特征向量,且正交
- 若(A = A^H in C^{n imes n}),则A恰有n个正交的特征向量$
- 一些性质:
-
正定性:
- 半正定:定义:(A = A^H in C^{n imes n},f(X) = X^HAX ge 0),记为(Age 0)
四、QR分解
-
求法:
(A = A_{n imes p}),且(A)列满秩,如何求 (A = QR):- 其中 (Q = (epsilon_1,...epsilon_p)_{n imes p}) 为半酉阵(或酉阵)
- 对A使用施密特正交化方法:
[Y_1 = X_1 ][Y_2 = X_2 - frac{(X_2,Y_1)}{|Y_1|^2}Y_1 ][Y_3 = X_3 - frac{(X_3,Y_1)}{|Y_1|^2}Y_1 - frac{(X_3,Y_2)}{|Y_2|^2}Y_2 ][Y_p = X_p - sum^{p-1}_{j = 0} frac{(X_n,Y_i)}{|Y_i|^2}Y_i ]
- 对 (Y_i) 进行单位化,得到 (epsilon_i)
- 对A使用施密特正交化方法:
- R为正线上三角,且主对角线上元素 (b_i = |Y_i|)
- (A = QR Rightarrow Q^HA = R)
- 其中 (Q = (epsilon_1,...epsilon_p)_{n imes p}) 为半酉阵(或酉阵)
-
结论
- 任一方阵(A in C^{n imes n}),存在酉阵(Q)与上三角阵(R),使得(A = QR)
- 取(A)第一列,利用镜面阵引理构造镜面阵(P)
- (PA = R,A = P^{-1}R) 形如 (A = QR)
- 任一方阵(A in C^{n imes n}),存在酉阵(Q)与上三角阵(R),使得(A = QR)
五、常见矩阵分解
-
秩1分解:设 (A = A_{m imes n},r(A) = rank(A) = 1),即(A)各列成比例,记 (A = alphaeta,alpha = (alpha_1,cdots,alpha_m)^T,eta = (eta_1,cdots,eta_n))
- 当A为方阵时,(lambda(A) = {tr(A),0,cdots,0}),且(Aalpha = tr(A)alpha),解(Sigma b_ix_i = 0),得到另外的特征向量
-
满秩分解(高低分解):设 (A = A_{m imes n},r(A) = rank(A) = P(P ge 1)Rightarrow A = BC),其中(B = B_{m imes p}),为列满秩(r(B) = P) (B叫高阵);(C = C_{p imes n}),为行满纸(r(C) = P) (C叫低阵)
- 解法:行变法,将A转化为形如D的矩阵,取(oldsymbol{D})的前(P)行为(C),取(oldsymbol{A})中前(P)列为(B):
[D = left( egin{matrix} 1 & cdots & 0& * &cdots & * \ vdots & ddots & vdots & * &cdots & * \ 0 & cdots &1 & * &cdots & * \ 0 & cdots & 0 & 0 &cdots & 0 \ vdots &vdots &vdots &vdots &vdots &vdots \ 0 &0 &0 &0 &0 &0 & \ end{matrix} ight)_{m imes n}\ ]- 几个性质:
- 高阵(B)有左侧逆(B_L):(B_LB = I_P,B_L = (B^HB)^{-1}B^H)
- 低阵(C)有右侧逆(C_R):(CC_R = I_P,C_R = C^H(CC^H)^{-1})
- 用法:
- 若 (BCX = 0),B为高阵,则 (B_LBCX = 0 Rightarrow CX = 0)
- 若 (BX = BY),B为高阵,则 (B_LBX = B_LBY)
六、换位公式
(A = A_{n imes p},B = B_{p imes n},AB in C^{n imes n},BA in C^{p imes p})
- 则 (|lambda I_n - AB| = lambda^{n-p}|lambda I_p - BA|)
[令 M = left( egin{matrix} AB& O\ B&O_p\ end{matrix} ight)_{n+p},N = left( egin{matrix} O_n& O\ B&BA\ end{matrix} ight)_{n+p},P = left( egin{matrix} I_n& A\ O&I_p\ end{matrix} ight)][MP = left( egin{matrix} AB& ABA\ B&BA\ end{matrix} ight) = PN,且P^{-1} = left( egin{matrix} I_n& -A\ O&I_p\ end{matrix} ight)][MP = PN Rightarrow P^{-1}MP = N Rightarrow |lambda I - M| = |lambda I -N| Rightarrow |lambda I_n - AB| = lambda^{n-p}|lambda I_p - BA| ]
- (AB)与(BA) 只差 (n-p) 个 (0) 根
- (tr(AB) = tr(BA) = sum {lambda_i})
七、奇异值分解
正奇值:设 (A = A_{m imes n}, r(A) = P > 0) ,则 (A^HA) 与 (AA^H) 恰有(P)个正特征根,称(sqrt{lambda_1},cdots,sqrt{lambda_p})为(A)的正奇异值,记为(S^+ (A) = {sqrt{lambda_1},cdots,sqrt{lambda_p}})
简奇异值分解:任意 (A = A_{m imes n},r(A) = r >0),则有分解 (A = PDelta Q^H),其中 (Delta) 为正线上三角,主对角线上依次为(sqrt{lambda_1},cdots,sqrt{lambda_p}),且(P = P_{m imes r},Q = Q_{n imes r})都是半酉阵:(P^HP = Q^HQ = I_r)
- 已知简奇异值分解 (A = PDelta Q^H,则A^H = QDelta P^H为A^H)的简化奇异值分解
- 令(P = (Y_1,cdots,Y_r),Q = (X_1,cdots,X_r)),可写(A = sum sqrt{lambda_i}Y_iX_i^H)
解法:求(A^HA)的正特征值,与对应的特征向量,令(Q = (frac{X_1}{|X_1|},cdots,frac{X_p}{|X_p|}),P = (frac{AX_1}{|AX_1|},cdots,frac{AX_p}{|AX_p|}))
奇异值分解:将简奇异值分解的(P,Q)扩充为酉阵,并将(Delta)扩充为与A同型
八、单纯阵
(A = A_{n imes n})为单阵(Leftrightarrow A sim D,D)为正线上三角,对角线上为特征值 (Leftrightarrow P^{-1}AP = D),也叫做可对角化
- (A = A_{n imes n})为单阵(Leftrightarrow A) 有 (n) 个线性无关的特征向量
- (A = A_{n imes n})为单阵(Leftrightarrow) 每个 (k) 重根,恰有(k)个线性无关的特征向量
- 若(n)阶方阵(A)有n个互异根,则(A)为单阵
- 若每个 (k>1) 重根,恰有 (k) 个特征向量,则 (A) 为单阵
- (A = A_{n imes n})恰有(k)个互异根,且(Pi (A-lambda_i) = 0),则(A)为单阵,反之亦然
- 任意一个(k>1)重根(lambda_i in lambda(A))
- 若 (r(A-lambda_i I) = n-k),则(A)为单阵,反之亦然
补充定义:若方阵(A)与多项式(f(x)),(f(A) = 0),则称(f(x))为(A)的一个0化式,(A)叫做(f(x))的一个矩阵根
- 可求出矩阵(A)次数最低的0化式,叫做(A)的极小式(m_A(x))
Cayley定理:方阵(A)的特征多项式(T(x) = |xI-A|),使得(T(A) = 0)
- 若(f(x))无重根且为(A)的0化式,则(A)为单阵
谱分解公式:
- 记(P^{-1}AP = D,D)为正线上三角,记(D = sum lambda_iE_i),有:
- (sum E_i = I_n)
- (E_iE_j = 0, i e j)
- (E^2_i = E_i)
- (E^H_i = E_i)
- 记(P^{-1}AP = D Rightarrow A = PDP^{-1} = sum lambda_i(PE_iP^{-1}))
- 记(F_i = PE_iP^{-1})
- 可写(A =sum lambda_iF_i)(即A的原谱分解),且:
- (sum F_i = I_n)
- (F_iF_j = 0, i e j)
- (F^2_i = F_i)
- 但(F^H_i e F_i),当且仅当P为酉阵时成立(F^H_i = F_i)
- 单阵谱分解公式:若A为单阵,全体不同根为(t_1,cdots,t_k,k le n)有:
- (A =sum t_iG_i),这些G叫做谱阵
- (sum G_i = I_n)
- (G_iG_j = 0, i e j)
- (G^2_i = G_i)
- (A^p =sum t^p_iG_i)
- 任意多项式(f(x)),有(f(A) = sum f(t_i)G_i)
- 且(G_i = frac{(A-t_1)(A-t_2)cdots(A-t_k)}{(t_i-t_1)(t_i-t_2)cdots(t_i-t_k)}),其中分子中不含((A-t_i)),分母中不含((t_i-t_i))