“和"(布尔值)与“&" (按位)-为什么列表与numpy数组在行为上有所不同?
什么解释了列表与NumPy数组上布尔运算和按位运算的行为差异?
我对在Python中正确使用&
与and
感到困惑,如以下示例所示.
I'm confused about the appropriate use of &
vs and
in Python, illustrated in the following examples.
mylist1 = [True, True, True, False, True]
mylist2 = [False, True, False, True, False]
>>> len(mylist1) == len(mylist2)
True
# ---- Example 1 ----
>>> mylist1 and mylist2
[False, True, False, True, False]
# I would have expected [False, True, False, False, False]
# ---- Example 2 ----
>>> mylist1 & mylist2
TypeError: unsupported operand type(s) for &: 'list' and 'list'
# Why not just like example 1?
>>> import numpy as np
# ---- Example 3 ----
>>> np.array(mylist1) and np.array(mylist2)
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
# Why not just like Example 4?
# ---- Example 4 ----
>>> np.array(mylist1) & np.array(mylist2)
array([False, True, False, False, False], dtype=bool)
# This is the output I was expecting!
此答案和这个答案帮助我理解了 and
是布尔操作,但 &
是按位运算.
This answer and this answer helped me understand that and
is a boolean operation but &
is a bitwise operation.
我阅读了有关按位操作的信息,以更好地理解该概念,但是我正在努力使用该概念信息可以理解我上面的四个示例.
I read about bitwise operations to better understand the concept, but I am struggling to use that information to make sense of my above 4 examples.
示例4使我达到所需的输出,这很好,但是对于何时/如何/为什么应该使用and
vs &
仍然感到困惑.为什么列表和NumPy数组在这些运算符上的行为不同?
Example 4 led me to my desired output, so that is fine, but I am still confused about when/how/why I should use and
vs &
. Why do lists and NumPy arrays behave differently with these operators?
谁能帮助我理解布尔运算和按位运算之间的区别,以解释为什么它们对列表和NumPy数组的处理方式不同?
and
测试两个表达式在逻辑上是否是True
,而&
(与True
/False
值一起使用时)测试两个表达式是否都在逻辑上True
.
and
tests whether both expressions are logically True
while &
(when used with True
/False
values) tests if both are True
.
在Python中,通常将空的内置对象在逻辑上视为False
,而将非空的内置对象在逻辑上视为True
.这可以简化常见的用例,在这种情况下,如果列表为空,则要执行某项操作;如果列表为空,则要执行其他操作.请注意,这意味着列表[False]在逻辑上是True
:
In Python, empty built-in objects are typically treated as logically False
while non-empty built-ins are logically True
. This facilitates the common use case where you want to do something if a list is empty and something else if the list is not. Note that this means that the list [False] is logically True
:
>>> if [False]:
... print 'True'
...
True
因此,在示例1中,第一个列表是非空的,因此在逻辑上是True
,因此and
的真值与第二个列表的真值相同. (在我们的例子中,第二个列表是非空的,因此在逻辑上是True
,但是要识别该列表将需要不必要的计算步骤.)
So in Example 1, the first list is non-empty and therefore logically True
, so the truth value of the and
is the same as that of the second list. (In our case, the second list is non-empty and therefore logically True
, but identifying that would require an unnecessary step of calculation.)
例如,列表2不能以位方式有意义地组合,因为它们可以包含任意不同的元素.可以按位组合的内容包括:对与错,整数.
For example 2, lists cannot meaningfully be combined in a bitwise fashion because they can contain arbitrary unlike elements. Things that can be combined bitwise include: Trues and Falses, integers.
NumPy对象支持矢量化计算.也就是说,它们使您可以对多个数据执行相同的操作.
NumPy objects, by contrast, support vectorized calculations. That is, they let you perform the same operations on multiple pieces of data.
示例3失败,因为NumPy数组(长度> 1)没有真值,因为这防止了基于向量的逻辑混乱.
Example 3 fails because NumPy arrays (of length > 1) have no truth value as this prevents vector-based logic confusion.
示例4只是一个向量化的and
位操作.
Example 4 is simply a vectorized bit and
operation.
底线
-
如果您不处理数组并且不执行整数的数学运算,则可能需要
and
.
如果要合并真值向量,请将numpy
与&
结合使用.
If you have vectors of truth values that you wish to combine, use numpy
with &
.