算法4:求整型数组的连续子数组的最大和

算法4:求整型数组的连续子数组的最大和

算法4:求整型数组的连续子数组的最大和

输入一个整型数组,数组里既有正数也有负数,数组中连续一个或者多个组成整型子数组,每个子数组都有一个和,求所有子数组的最大和,要求时间复杂度为O(n)。

解题思路

使用贪婪算法,数组从开始往后遍历,记录最大和,当前和小于0时,当前子数组和置为0.

c++代码如下

//使用贪婪算法,遇到sum<0的情况,就将sum置0 void GetSubMaxSum(int srcBuffer[],int srcBufferLen,int maxSubBuffer[],int& maxSubLength,int& maxSum) { if(srcBuffer == NULL || srcBufferLen <= 0) { maxSubBuffer = NULL; maxSum = 0; return; } maxSum = 0; int maxSubBufferLen = 0; int sum = 0; int beginIndex = 0; int endIndex = 0; for(int i = 0; i < srcBufferLen; i++) { sum +=srcBuffer[i]; if(sum > maxSum) { endIndex = i; maxSum = sum; } if(sum <= 0) { beginIndex = i; sum=0; } } maxSubLength = 0; for(int i = beginIndex; i <=endIndex; i++) { maxSubBuffer[maxSubLength++]=srcBuffer[i]; } }

测试代码如下

int _tmain(int argc, _TCHAR* argv[]) { const int srcLength = 10; int srcBuffer[srcLength] = {0}; cout<<"please input 10 int valude"<<endl; for(int i = 0; i < srcLength;i++) { cin>>srcBuffer[i]; } int maxSubBuffer[srcLength] = {0}; int maxSum = 0; int maxSubLength = 0; GetSubMaxSum(srcBuffer,srcLength,maxSubBuffer,maxSubLength,maxSum); cout<<"maxsum = "<<maxSum<<endl; for(int i = 0; i < maxSubLength; i++) { cout<<maxSubBuffer[i]<<" "; } cout<<endl; return 0; }