zoj3229 Shoot the Bullet(有源汇有上下界的最大流)

题意:

一个屌丝给m个女神拍照,计划拍照n天,每一天屌丝给给定的C个女神拍照,每天拍照数不能超过D张,而且给每个女神i拍照有数量限制[Li,Ri],对于每个女神n天的拍照总和不能少于Gi,如果有解求屌丝最多能拍多少张照,并求每天给对应女神拍多少张照;否则输出-1。

分析:

增设一源点st,汇点sd,st到第i天连一条上界为Di下界为0的边,每个女神到汇点连一条下界为Gi上界为oo的边,对于每一天,当天到第i个女孩连一条[Li,Ri]的边。

建图模型:源点s,终点d。超级源点ss,超级终点dd。首先判断是否存在满足所有边上下界的可行流,方法可以转化成无源汇有上下界的可行流问题。怎么转换呢?

增设一条从d到s没有下界容量,上界容量为无穷的边,那么原图就变成了一个无源汇的循环流图。接下来的事情一样,超级源点ss连i(du[i]>0),i连超级汇点(du[i]<0),

对(ss,dd)进行一次最大流,当maxflow等于所有(du[]>0)之和时,有可行流,否则没有。

当有可行流时,删除超级源点ss和超级终点dd,再对(s,d)进行一次最大流,此时得到的maxflow则为题目的解。

为什么呢?因为第一次maxflow()只是求得所有满足下界的流量,而残留网络(s,d)路上还有许多*流(没有和超级源点和超级汇点连接的边)没有流满,所有最终得到的maxflow=(第一次流满下界的流+第二次能流通的*流)。

// File Name: 3229.cpp
// Author: Zlbing
// Created Time: 2013/6/30 20:44:46

#include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
using namespace std;
#define CL(x,v); memset(x,v,sizeof(x));
#define INF 0x3f3f3f3f
#define LL long long
#define REP(i,r,n) for(int i=r;i<=n;i++)
#define RREP(i,n,r) for(int i=n;i>=r;i--)
const int MAXN=1500;
struct Edge{
    int from,to,cap,flow;
};
bool cmp(const Edge& a,const Edge& b){
    return a.from < b.from || (a.from == b.from && a.to < b.to);
}
struct Dinic{
    int n,m,s,t;
    vector<Edge> edges;
    vector<int> G[MAXN];
    bool vis[MAXN];
    int d[MAXN];
    int cur[MAXN];
    void init(int n){
        this->n=n;
        for(int i=0;i<=n;i++)G[i].clear();
        edges.clear();
    }
    void AddEdge(int from,int to,int cap){
        edges.push_back((Edge){from,to,cap,0});
        edges.push_back((Edge){to,from,0,0});//当是无向图时,反向边容量也是cap,有向边时,反向边容量是0
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool BFS(){
        CL(vis,0);
        queue<int> Q;
        Q.push(s);
        d[s]=0;
        vis[s]=1;
        while(!Q.empty()){
            int x=Q.front();
            Q.pop();
            for(int i=0;i<G[x].size();i++){
                Edge& e=edges[G[x][i]];
                if(!vis[e.to]&&e.cap>e.flow){
                    vis[e.to]=1;
                    d[e.to]=d[x]+1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x,int a){
        if(x==t||a==0)return a;
        int flow=0,f;
        for(int& i=cur[x];i<G[x].size();i++){
            Edge& e=edges[G[x][i]];
            if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0){
                e.flow+=f;
                edges[G[x][i]^1].flow-=f;
                flow+=f;
                a-=f;
                if(a==0)break;
            }
        }
        return flow;
    }
    //当所求流量大于need时就退出,降低时间
    int Maxflow(int s,int t,int need){
        this->s=s;this->t=t;
        int flow=0;
        while(BFS()){
            CL(cur,0);
            flow+=DFS(s,INF);
            if(flow>need)return flow;
        }
        return flow;
    }
    //最小割割边
    vector<int> Mincut(){
        BFS();
        vector<int> ans;
        for(int i=0;i<edges.size();i++){
            Edge& e=edges[i];
            if(vis[e.from]&&!vis[e.to]&&e.cap>0)ans.push_back(i);
        }
        return ans;
    }
    void Reduce(){
        for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow;
    }
    void ClearFlow(){
        for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
    }
};

int n,m;
Dinic solver;
int du[MAXN];
int dn[MAXN][MAXN];
int id[MAXN][MAXN];
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        int s=0,t=n+m+1;
        int ss=n+m+2,tt=n+m+3;
        int a,b,c;
        CL(du,0);
        CL(dn,0);
        CL(id,0);
        solver.init(n+m+5);
        REP(i,1,m)
        {
            scanf("%d",&a);
            solver.AddEdge(n+i,t,INF-a);
            du[n+i]-=a;
            du[t]+=a;
        }
        int C,D;
        REP(i,1,n)
        {
            scanf("%d%d",&C,&D);
            solver.AddEdge(s,i,D);
            REP(j,1,C)
            {
                scanf("%d%d%d",&a,&b,&c);
                solver.AddEdge(i,a+n+1,c-b);
                du[i]-=b;
                du[a+n+1]+=b;
                dn[i][a]=b;
                id[i][a]=solver.edges.size()-2;
            }
        }
        solver.AddEdge(t,s,INF);
        int sum=0;
        REP(i,1,t)
        {
            if(du[i]<0)
            {
                solver.AddEdge(i,tt,-du[i]);
            }
            else if(du[i]>0)
            {
                solver.AddEdge(ss,i,du[i]);
                sum+=du[i];
            }
        }
        int maxflow=solver.Maxflow(ss,tt,INF);
        if(maxflow==sum)
        {
            int ans=solver.Maxflow(s,t,INF);
            printf("%d
",ans);
            for(int i=1;i<=n;i++)
            {
                for(int j=0;j<m;j++)
                    if(id[i][j])
                        printf("%d
",solver.edges[id[i][j]].flow+dn[i][j]);
            }
        }
        else printf("-1
");
        printf("
");
    }
    return 0;
}