Solution -「ACM-ICPC BJ 2002」「POJ 1322」Chocolate (mathcal{Description}) (mathcal{Solution})

Solution -「ACM-ICPC BJ 2002」「POJ 1322」Chocolate
(mathcal{Description})
(mathcal{Solution})

  Link.

  (c) 种口味的的巧克力,每种个数无限。每次取出一个,取 (n) 次,求恰有 (m) 个口味出现奇数次的概率。

(mathcal{Solution})

  由于比较板(且要补的题太多),所以会简略一点。

  首先,(n,m) 不同奇偶;(m) 大于 (c)(n) 无解,特判掉。考虑到“取出”有序,引入 ( ext{EGF})。显然题目要求:

[[x^n]inom{c}{m}left(frac{e^x+e^{-x}}2 ight)^{c-m}left(frac{e^x-e^{-x}}2 ight)^m ]

  记后面这个式子为 (G(x)),推导:

[egin{aligned}G(x)&=inom{c}{m}2^{-c}(e^x+e^{-x})^{c-m}(e^x-e^{-x})^m\&=inom{c}{m}2^{-c}sum_{i=0}^{c-m}sum_{j=0}^m(-1)^jinom{c-m}{i}inom{m}{j}e^{(c-2i-2j)x}\&=inom{c}{m}2^{-c}sum_{i=0}^{c-m}sum_{j=0}^m(-1)^jinom{c-m}{i}inom{m}{j}sum_{k=0}^{+infty}frac{(c-2i-2j)^k}{k!}end{aligned} ]

  代入 (k=n)(mathcal O(n^2)) 求解,注意精度。

(mathcal{Code})

#include <cstdio>

const int MAXC = 100;
int c, n, m;
double comb[MAXC + 5][MAXC + 5];

inline void init () {
	comb[0][0] = 1;
	for ( int i = 1; i <= MAXC; ++ i ) {
		comb[i][0] = 1;
		for ( int j = 1; j <= i; ++ j ) {
			comb[i][j] = comb[i - 1][j - 1] + comb[i - 1][j];
		}
	}
}

inline double qkpow ( double a, int b ) {
	double ret = 1;
	for ( ; b; a *= a, b >>= 1 ) ret *= b & 1 ? a : 1.0;
	return ret;
}

int main () {
	init ();
	while ( ~ scanf ( "%d", &c ) && c ) {
		scanf ( "%d %d", &n, &m );
		if ( ( n & 1 ) ^ ( m & 1 ) || m > c || m > n ) { puts ( "0.000" ); continue; }
		double ans = 0;
		for ( int i = 0; i <= c - m; ++ i ) {
			for ( int j = 0; j <= m; ++ j ) {
				ans += ( j & 1 ? -1 : 1 ) * comb[c - m][i]
					* comb[m][j] * qkpow ( ( c - 2.0 * i - 2.0 * j ) / c, n );
			}
		}
		ans = ans * comb[c][m] / qkpow ( 2, c );
		printf ( "%.3f
", ans );
	}
	return 0;
}