用Python复制2D数组最快的方法是什么?
我必须在 R * C
网格上进行大量模拟。
I have to make a very large number of simulations on a R*C
grid.
这些模拟正在更改网格,因此我需要先复制参考网格,然后将仿真功能应用于全新的网格。
These simulations are altering the grid, so I need to copy my reference grid before each, and then apply my simulating function on the fresh new grid.
最快的方法是
由于我在StackOverflow上没有找到类似的问题,因此我自己进行了测试决定将其发布在这里,认为它们可能对其他人有用。
答案将是社区的回应,以便其他人可以添加新的
如果您添加其他方法,请记住要测量所有旧测试并进行更新,因为时间取决于
我使用了bash变量来设置 timeit
测试:
I used a bash variable for setting up the timeit
tests:
setup="""
R = 100
C = 100
from copy import deepcopy
import numpy as np
ref = [[i for i in range(C)] for _ in range(R)]
ref_np = np.array(ref)
cp = [[100 for i in range(C)] for _ in range(R)]
cp_np = np.array(cp)
"""
为方便起见,我还设置了一个临时别名 pybench
:
Just for convenience, I also set a temporary alias pybench
:
alias pybench='python3.5 -m timeit -s "$setup" $1'
Python 3
Python 3.5.0+(默认值,2015年10月11日,09:05:38)
-
Deepcopy:
>>> pybench "cp = deepcopy(ref)"
100 loops, best of 3: 8.29 msec per loop
使用索引修改预先创建的数组:
>>> pybench \
"for y in range(R):
for x in range(C):
cp[y][x] = ref[y][x]"
1000 loops, best of 3: 1.16 msec per loop
嵌套列表理解力:
>>> pybench "cp = [[x for x in row] for row in ref]"
1000 loops, best of 3: 390 usec per loop
切片:
>>> pybench "cp = [row[:] for row in ref]"
10000 loops, best of 3: 45.8 usec per loop
NumPy复制:
>>> pybench "cp_np = np.copy(ref_np)"
100000 loops, best of 3: 6.03 usec per loop
复制到预先创建的NumPy数组:
>>> pybench "np.copyto(cp_np, ref_np)"
100000 loops, best of 3: 4.52 usec per loop
这些结果并不令人感到意外,正如您可能已经猜到的那样,使用NumPy的速度非常快,尤其是如果有人避免每次都创建新表。
There is nothing very surprising in these results, as you might have guessed, use NumPy is enormously faster, especially if one avoids creating a new table each time.