自联接无法按预期与 DataFrame API 一起使用
我正在尝试使用自联接从表中获取最新记录.它使用 spark-sql
工作,但不使用 spark DataFrame
API 工作.
I am trying to get the latest records from a table using self join. It works using spark-sql
but not working using spark DataFrame
API.
有人可以帮忙吗?是bug吗?
Can anyone help? Is it a bug?
我在本地模式下使用 Spark 2.2.0
I am using Spark 2.2.0 in local mode
创建输入DataFrame
:
scala> val df3 = spark.sparkContext.parallelize(Array((1,"a",1),(1,"aa",2),(2,"b",2),(2,"bb",5))).toDF("id","value","time")
df3: org.apache.spark.sql.DataFrame = [id: int, value: string ... 1 more field]
scala> val df33 = df3
df33: org.apache.spark.sql.DataFrame = [id: int, value: string ... 1 more field]
scala> df3.show
+---+-----+----+
| id|value|time|
+---+-----+----+
| 1| a| 1|
| 1| aa| 2|
| 2| b| 2|
| 2| bb| 5|
+---+-----+----+
scala> df33.show
+---+-----+----+
| id|value|time|
+---+-----+----+
| 1| a| 1|
| 1| aa| 2|
| 2| b| 2|
| 2| bb| 5|
+---+-----+----+
现在使用 SQL 执行连接:有效
Now performing the join using SQL: works
scala> spark.sql("select df33.* from df3 join df33 on df3.id = df33.id and df3.time < df33.time").show
+---+-----+----+
| id|value|time|
+---+-----+----+
| 1| aa| 2|
| 2| bb| 5|
+---+-----+----+
现在使用数据帧 API 执行连接:不起作用
Now performing the join using dataframe API: doesn't work
scala> df3.join(df33, (df3.col("id") === df33.col("id")) && (df3.col("time") < df33.col("time")) ).select(df33.col("id"),df33.col("value"),df33.col("time")).show
+---+-----+----+
| id|value|time|
+---+-----+----+
+---+-----+----+
需要注意的是解释计划:空白用于DataFrame
API!!
The thing to notice is the explain plans: blank for the DataFrame
API!!
scala> df3.join(df33, (df3.col("id") === df33.col("id")) && (df3.col("time") < df33.col("time")) ).select(df33.col("id"),df33.col("value"),df33.col("time")).explain
== Physical Plan ==
LocalTableScan <empty>, [id#150, value#151, time#152]
scala> spark.sql("select df33.* from df3 join df33 on df3.id = df33.id and df3.time < df33.time").explain
== Physical Plan ==
*Project [id#1241, value#1242, time#1243]
+- *SortMergeJoin [id#150], [id#1241], Inner, (time#152 < time#1243)
:- *Sort [id#150 ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(id#150, 200)
: +- *Project [_1#146 AS id#150, _3#148 AS time#152]
: +- *SerializeFromObject [assertnotnull(input[0, scala.Tuple3, true])._1 AS _1#146, staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString,
assertnotnull(input[0, scala.Tuple3, true])._2, true) AS _2#147, assertnotnull(input[0, scala.Tuple3, true])._3 AS _3#148]
: +- Scan ExternalRDDScan[obj#145]
+- *Sort [id#1241 ASC NULLS FIRST], false, 0
+- Exchange hashpartitioning(id#1241, 200)
+- *Project [_1#146 AS id#1241, _2#147 AS value#1242, _3#148 AS time#1243]
+- *SerializeFromObject [assertnotnull(input[0, scala.Tuple3, true])._1 AS _1#146, staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString,
assertnotnull(input[0, scala.Tuple3, true])._2, true) AS _2#147, assertnotnull(input[0, scala.Tuple3, true])._3 AS _3#148]
+- Scan ExternalRDDScan[obj#145]
不,这不是一个错误,但是当你像你所做的那样将 DataFrame 重新分配给一个新的时,它实际上复制了世系,但它不会重复数据.因此,您将在同一列上进行比较.
No that's not a bug, but when you reassign the DataFrame to a new one like what you have done, it actually copies the lineage but it doesn't duplicate the data. Thus you'll be comparing on the same column.
使用 spark.sql
略有不同,因为它实际上是在处理 DataFrame
s
Use spark.sql
is slightly different because it's actually working on aliases of your DataFrame
s
所以使用 API 执行自联接的正确方法实际上是别名你的 DataFrame
如下:
So the correct way to perform a self-join using the API is actually aliasing your DataFrame
as followed :
val df1 = Seq((1,"a",1),(1,"aa",2),(2,"b",2),(2,"bb",5)).toDF("id","value","time")
df1.as("df1").join(df1.as("df2"), $"df1.id" === $"df2.id" && $"df1.time" < $"df2.time").select($"df2.*").show
// +---+-----+----+
// | id|value|time|
// +---+-----+----+
// | 1| aa| 2|
// | 2| bb| 5|
// +---+-----+----+
有关自联接的更多信息,我建议阅读 Rachel Warren 的高性能 Spark,Holden Karau - 第 4 章.
For more information about self-joins, I recommend reading High Performance Spark by Rachel Warren, Holden Karau - Chapter 4.