HDU 5521.Meeting 最短路模板题 Meeting
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 3361 Accepted Submission(s): 1073
Problem Description
Bessie and her friend Elsie decide to have a meeting. However, after Farmer John decorated his
fences they were separated into different blocks. John's farm are divided into ) is a set of blocks. They want to know how soon they can meet each other
and which block should be chosen to have the meeting.
fences they were separated into different blocks. John's farm are divided into ) is a set of blocks. They want to know how soon they can meet each other
and which block should be chosen to have the meeting.
Input
The first line contains an integer 6.
Output
For each test case, if they cannot have the meeting, then output "Evil John" (without quotes) in one line.
Otherwise, output two lines. The first line contains an integer, the time it takes for they to meet.
The second line contains the numbers of blocks where they meet. If there are multiple
optional blocks, output all of them in ascending order.
Otherwise, output two lines. The first line contains an integer, the time it takes for they to meet.
The second line contains the numbers of blocks where they meet. If there are multiple
optional blocks, output all of them in ascending order.
Sample Input
2
5 4
1 3 1 2 3
2 2 3 4
10 2 1 5
3 3 3 4 5
3 1
1 2 1 2
Sample Output
Case #1: 3
3 4
Case #2: Evil John
Hint
In the first case, it will take Bessie 1 minute travelling to the 3rd block, and it will take Elsie 3 minutes travelling to the 3rd block. It will take Bessie 3 minutes travelling to the 4th block, and it will take Elsie 3 minutes travelling to the 4th block. In the second case, it is impossible for them to meet.
Source
题意:有m个集合,每个集合里面的任意两点均有一条距离为ei的无向边,求1和n到其他点的最短距离中最大值的最小值。
思路:最短路模板题。每个集合作为作为一个点,对应的点到集合的距离为ei,最后答案/2。
代码:
![HDU 5521.Meeting 最短路模板题
Meeting]()
最短路模板题
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #include<set> #include<bitset> #include<queue> #include<stack> #include<map> #include<vector> using namespace std; #define eps 0.0000001 typedef long long ll; typedef pair<int,int> P; const int maxn=2e5+100,maxm=1e5+100,inf=0x3f3f3f3f,mod=1e9+7; const ll INF=1e18+7; struct edge { int from,to; ll w; }; vector<edge>G[maxn]; priority_queue<P,vector<P>,greater<P> >q; ll dist[2][maxn]; void addedge(int u,int v,ll w) { G[u].push_back((edge) { u,v,w }); G[v].push_back((edge) { v,u,w }); } void dij(int t,int s) { dist[t][s]=0LL; q.push(P(dist[t][s],s)); while(!q.empty()) { P p=q.top(); q.pop(); int u=p.second; for(int i=0; i<G[u].size(); i++) { edge e=G[u][i]; if(dist[t][e.to]>dist[t][u]+e.w) { dist[t][e.to]=dist[t][u]+e.w; q.push(P(dist[t][e.to],e.to)); } } } } void init(int n) { for(int i=0; i<=2*n+10; i++) G[i].clear(); } int main() { int T; scanf("%d",&T); for(int Case=1; Case<=T; Case++) { int n,m; scanf("%d%d",&n,&m); for(int i=1; i<=m; i++) { int val; scanf("%lld",&val); int t; scanf("%d",&t); while(t--) { int s; scanf("%d",&s); addedge(s,n+i,val); } } for(int i=0; i<=2*n+10; i++) dist[0][i]=dist[1][i]=INF; dij(0,1); dij(1,n); ll ans=INF; for(int i=1; i<=n; i++) { //printf("%lld %lld ",dist[0][i],dist[1][i]); ans=min(ans,max(dist[0][i],dist[1][i])); } printf("Case #%d: ",Case); if(ans>=INF) puts("Evil John"); else { printf("%lld ",ans/2); int cou=0; for(int i=1; i<=n; i++) { if(!cou&&max(dist[0][i],dist[1][i])==ans) printf("%d",i),cou++; else if(cou&&max(dist[0][i],dist[1][i])==ans) printf(" %d",i),cou++; } printf(" "); } init(n); } return 0; }