多人过河(桥)最快速度有关问题终结
多人过河(桥)最快速度问题终结
一、问题
在漆黑的夜里,四位旅行者来到了一座狭窄而且没有护栏的桥边。如果不借助手电筒的话,大家是无论如何也不敢过桥去的。不幸的是,四个人一共只带了一只手电筒,而桥窄得只够让两个人同时过。如果各自单独过桥的话,四人所需要的时间分别是1、2、5、8分钟;而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间。问题是,如何设计一个方案,让这四人尽快过桥。 假设这四人分别为A、B、C、D。很明显,开始两人拿着手电筒过桥后,手电筒就在桥的另一边了,此时需要已经过桥的那两人中的一个再把手电筒送回桥这边。送手电筒回来过桥也要化时间,所以要选一个跑得比较快的。一个很自然的想法就是,每次让跑得最快的A陪着另一个过桥,然后A快速地跑回来,再陪下一位过去,最后所有人就都可以过桥了。
让我们来算一下这要多长时间。为了方便起见,我们把旅行者出发的桥的这一边称为“此岸”,而把旅行者想要到达的那边叫“彼岸”。在表达一个过桥方案时,我们用“←”来表示从彼岸到此岸的移动,用“→”表示从此岸到彼岸的移动。前面“A护送大家过河”的方案就可以写成:(右边数字为完成此步骤所需时间)
A B → 2
A ← 1
A C → 5
A ← 1
A D → 8
一共就是2+1+5+1+8=17分钟。 但其实有更快的办法:
A B → 2
A ← 1
C D → 8
B← 2
A B → 2
一共是2+1+8+2+2=15分钟。这个办法的聪明之处在于让两个走得最慢的人同时过桥,这样花去的时间只是走得最慢的那个人花的时间,而走得次慢的那位就不用另花时间过桥了。可以把所有可能的方案都列举一遍,就会发现这是最快的方案了。
现在我们把这个问题推广到N(N≥4)个人过桥的情况:如果有N个旅行者,假设他们有各自所需的过桥时间(正实数)。在只有一只手电筒的情况下,要过上述的一条桥,怎样才能找到最快的过桥方案?
假设最快地把N个旅行者从此岸移动到彼岸需要f分钟时间,那么我们把所有在f分钟时间内把N个旅行者从此岸移动到彼岸的方案称为“最佳方案”。最佳方案很有可能不止一个,我们的目的是要找到一个最佳方案,但是并不需要把所有的最佳方案全都找出来。
如果给定N个(速度不同)的旅行者,根据结论九我们知道有一个最佳方案,在最初的4步里用模式一或模式二把最慢的两个旅行者移动到彼岸,于是问题被约化成N-2个旅行者的形式。问题在于应该选择哪一种模式。继续假设A、B为走得最快和次快的旅行者,过桥所需时间分别为a、b;而Z、Y为走得最慢和次慢的旅行者,过桥所需时间分别为z、y。
在第六节中我们发现使用模式一移动Z和Y到彼岸所需的时间为:
z + a + y + a
使用模式二移动Z和Y到彼岸所需的时间为:
b + a + z + b
所以,
当2b>a+y时,应该使用模式一;
当2b<a+y时,应该使用模式二;
当2b=a+y时,使用模式一或二都可以。
上面的讨论都是在N≥4时进行的,那时最快、次快、最慢和次慢是四个不同的人。所以我们还要稍微讨论一下N=1、2、3的情况。
N=1、2是不用动脑子的,直接通通过桥就是了。
N=3也很简单,用穷举法可以发现由最快的人往返一次把其他两人送过河是最快的方法。
于是我们得到了最终结论:最佳方案构造法:以下是构造N个人(N≥1)过桥最佳方案的方法:
1) 如果N=1、2,所有人直接过桥。
2) 如果N=3,由最快的人往返一次把其他两人送过河。
3) 如果N≥4,设A、B为走得最快和次快的旅行者,过桥所需时间分别为a、b;而Z、Y为走得最慢和次慢的旅行者,过桥所需时间分别为z、y。那么
当2b>a+y时,使用模式一将Z和Y移动过桥;
A Z → z
A ← a
A Y → y
A ← a
当2b<a+y时,使用模式二将Z和Y移动过桥;
A B → b
A ← a
Y Z → z
B ← b
当2b=a+y时,使用模式一将Z和Y移动过桥。
这样就使问题转变为N-2个旅行者的情形,从而递归解决之。
最后当然我们要举一个具体的例子:七个旅行者,所需过桥时间分别是1、4、5、5、5、8、9分钟。
我们假设他们顺次为A、B、C、D、E、F、G,我们注意到C、D、E的速度一样,用第二节的方法太正规也太麻烦,我们可以人为规定C速度稍稍大于D,D速度又稍稍大于E。
采用结论十的方法,最快和次快的是A、B,时间为1和4;最慢和次慢的是G和F,时间为9和8。现在2*4<1+9,所以用模式二:
第1步: A B → 4
第2步: A ← 1
第3步: F G → 9
第4步: B ← 4
现在剩下A、B、C、D、E在此岸,最快和次快的是A、B,时间为1和4;最慢和次慢的是E和D,时间为5和5。现在2*4>1+5,所以用模式一:
第5步: A E → 5
第6步: A ← 1
第7步: A D → 5
第8步: A ← 1
现在剩下A、B、C在此岸,用N=3的办法结束:
第9步: A C → 5
第10步: A ← 1
第11步: A B → 4
总的时间为
4+1+9+4+5+1+5+1+5+1+4 = 40分钟
虽然我一个其他的方案都没列举,我知道这个40分钟的方案必定是最佳的。
一、问题
在漆黑的夜里,四位旅行者来到了一座狭窄而且没有护栏的桥边。如果不借助手电筒的话,大家是无论如何也不敢过桥去的。不幸的是,四个人一共只带了一只手电筒,而桥窄得只够让两个人同时过。如果各自单独过桥的话,四人所需要的时间分别是1、2、5、8分钟;而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间。问题是,如何设计一个方案,让这四人尽快过桥。 假设这四人分别为A、B、C、D。很明显,开始两人拿着手电筒过桥后,手电筒就在桥的另一边了,此时需要已经过桥的那两人中的一个再把手电筒送回桥这边。送手电筒回来过桥也要化时间,所以要选一个跑得比较快的。一个很自然的想法就是,每次让跑得最快的A陪着另一个过桥,然后A快速地跑回来,再陪下一位过去,最后所有人就都可以过桥了。
让我们来算一下这要多长时间。为了方便起见,我们把旅行者出发的桥的这一边称为“此岸”,而把旅行者想要到达的那边叫“彼岸”。在表达一个过桥方案时,我们用“←”来表示从彼岸到此岸的移动,用“→”表示从此岸到彼岸的移动。前面“A护送大家过河”的方案就可以写成:(右边数字为完成此步骤所需时间)
A B → 2
A ← 1
A C → 5
A ← 1
A D → 8
一共就是2+1+5+1+8=17分钟。 但其实有更快的办法:
A B → 2
A ← 1
C D → 8
B← 2
A B → 2
一共是2+1+8+2+2=15分钟。这个办法的聪明之处在于让两个走得最慢的人同时过桥,这样花去的时间只是走得最慢的那个人花的时间,而走得次慢的那位就不用另花时间过桥了。可以把所有可能的方案都列举一遍,就会发现这是最快的方案了。
现在我们把这个问题推广到N(N≥4)个人过桥的情况:如果有N个旅行者,假设他们有各自所需的过桥时间(正实数)。在只有一只手电筒的情况下,要过上述的一条桥,怎样才能找到最快的过桥方案?
假设最快地把N个旅行者从此岸移动到彼岸需要f分钟时间,那么我们把所有在f分钟时间内把N个旅行者从此岸移动到彼岸的方案称为“最佳方案”。最佳方案很有可能不止一个,我们的目的是要找到一个最佳方案,但是并不需要把所有的最佳方案全都找出来。
如果给定N个(速度不同)的旅行者,根据结论九我们知道有一个最佳方案,在最初的4步里用模式一或模式二把最慢的两个旅行者移动到彼岸,于是问题被约化成N-2个旅行者的形式。问题在于应该选择哪一种模式。继续假设A、B为走得最快和次快的旅行者,过桥所需时间分别为a、b;而Z、Y为走得最慢和次慢的旅行者,过桥所需时间分别为z、y。
在第六节中我们发现使用模式一移动Z和Y到彼岸所需的时间为:
z + a + y + a
使用模式二移动Z和Y到彼岸所需的时间为:
b + a + z + b
所以,
当2b>a+y时,应该使用模式一;
当2b<a+y时,应该使用模式二;
当2b=a+y时,使用模式一或二都可以。
上面的讨论都是在N≥4时进行的,那时最快、次快、最慢和次慢是四个不同的人。所以我们还要稍微讨论一下N=1、2、3的情况。
N=1、2是不用动脑子的,直接通通过桥就是了。
N=3也很简单,用穷举法可以发现由最快的人往返一次把其他两人送过河是最快的方法。
于是我们得到了最终结论:最佳方案构造法:以下是构造N个人(N≥1)过桥最佳方案的方法:
1) 如果N=1、2,所有人直接过桥。
2) 如果N=3,由最快的人往返一次把其他两人送过河。
3) 如果N≥4,设A、B为走得最快和次快的旅行者,过桥所需时间分别为a、b;而Z、Y为走得最慢和次慢的旅行者,过桥所需时间分别为z、y。那么
当2b>a+y时,使用模式一将Z和Y移动过桥;
A Z → z
A ← a
A Y → y
A ← a
当2b<a+y时,使用模式二将Z和Y移动过桥;
A B → b
A ← a
Y Z → z
B ← b
当2b=a+y时,使用模式一将Z和Y移动过桥。
这样就使问题转变为N-2个旅行者的情形,从而递归解决之。
最后当然我们要举一个具体的例子:七个旅行者,所需过桥时间分别是1、4、5、5、5、8、9分钟。
我们假设他们顺次为A、B、C、D、E、F、G,我们注意到C、D、E的速度一样,用第二节的方法太正规也太麻烦,我们可以人为规定C速度稍稍大于D,D速度又稍稍大于E。
采用结论十的方法,最快和次快的是A、B,时间为1和4;最慢和次慢的是G和F,时间为9和8。现在2*4<1+9,所以用模式二:
第1步: A B → 4
第2步: A ← 1
第3步: F G → 9
第4步: B ← 4
现在剩下A、B、C、D、E在此岸,最快和次快的是A、B,时间为1和4;最慢和次慢的是E和D,时间为5和5。现在2*4>1+5,所以用模式一:
第5步: A E → 5
第6步: A ← 1
第7步: A D → 5
第8步: A ← 1
现在剩下A、B、C在此岸,用N=3的办法结束:
第9步: A C → 5
第10步: A ← 1
第11步: A B → 4
总的时间为
4+1+9+4+5+1+5+1+5+1+4 = 40分钟
虽然我一个其他的方案都没列举,我知道这个40分钟的方案必定是最佳的。