ACM-威佐夫博弈之取石头子儿游戏——hdu1527

ACM-威佐夫博弈之取石子游戏——hdu1527

取石子游戏

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3287    Accepted Submission(s): 1632

Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
 
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
 
Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
 
Sample Input
2 1 8 4 4 7
 
Sample Output
0 1 0
 
Source
NOI
 
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1527

先解释一下威佐夫博弈吧:

所谓威佐夫博弈,是ACM题中常见的组合游戏中的一种,大致上是这样的:

有两堆石子,不妨先认为一堆有 10,另一堆有 15 个,双方轮流取走一些石子,合法的取法有如下两种:
1、在一堆石子中取走任意多颗;
2、在两堆石子中取走相同多的任意颗;
约定取走最后一颗石子的人为赢家,求必胜策略。


两堆石头地位是一样的,我们用余下的石子数(a,b)来表示状态,并画在平面直角坐标系上。

和前面类似,(0,0)肯定是 P 态,又叫必败态。

(0,k),(k,0),(k,k)系列的节点肯定不是 P 态,而是必胜态,你面对这样的局面一定会胜,

只要按照规则取一次就可以了。

再看 y = x 上方未被划去的格点,(1,2)是 P 态。

k > 2 时,(1,k)不是 P 态,比如你要是面对(1,3)的局面,你是有可能赢的。

同理,(k,2),(1 + k, 2 + k)也不是 P 态,划去这些点以及它们的对称点,然后再找出 y = x 上方剩余的点,

你会发现(3,5)是一个 P 态,如此下去,如果我们只找出 a ≤ b 的 P 态,则它们是(0,0),(1,2),(3,5),(4,7),(6,10)……它们有什么规律吗?

忽略(0,0),很快会发现对于第 i 个 P 态的 a,a = i * (sqrt(5) + 1)/2 然后取整;而 b = a + i。居然和黄金分割点扯上了关系。
前几个必败点如下:(0,0),(1,2),(3,5),(4,7),(6,10),(8,13)……可以发现,对于第k个必败点(m(k),n(k))来说,m(k)是前面没有出现过的最小自然数,n(k)=m(k)+k。

那么任给一个局势(a,b),怎样判断它是不是必败态呢?我们有如下公式:

    ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,…,n 方括号表示取整函数)

奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近
似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[
j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1
+ j + 1,若都不是,那么就是必胜态。

恩,以上就是 威佐夫博弈。反正最终我是领悟了:按公式求两点是否为 必败态。

公式:

m(k) = k * (1 + sqrt(5))/2
n(k) = m(k) + k;


恩,于是乎,题目迎刃而解。

/**************************************
***************************************
*        Author:Tree                  *
*From :http://blog.****.net/lttree    *
* Title : 取石子游戏                  *
*Source: hdu 1527                     *
* Hint  : 威佐夫博弈                  *
***************************************
**************************************/
#include <stdio.h>
#include <math.h>
int main()
{
    int a,b,k;
    while( scanf("%d%d",&a,&b)!=EOF )
    {
        // 当a<b时,交换a,b的值,当然你也可以用一个中间变量来交换a,b值
        if( a < b )
        {
            a^=b;
            b^=a;
            a^=b;
        }
        k=a-b;
        a=int( k*(sqrt(5.0)+1)/2.0 );
        if( a==b )  printf("0\n");
        else    printf("1\n");
    }
    return 0;
}